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ABSTRACT

The Commodore Barry Bridge (CBB) is a major long-span,
cantilever through truss bridge owned by the Delaware River Port
Authority (DRPA). To evaluate the performance of this bridge, it
is necessary to implement an appropriate health monitoring sys-
tem, conduct structural analysis, measure the operating and load-
ing environment as well as the critical responses of the structure.
The health monitoring system may be used in order to track op-
erational anomalies, detertoration or damage indicators that may
impact service or safety reliability,. The knowledge space re-
quired to accomplish such complex engineening tasks is innite
and uncertain. This engineering domain itself is not well under-
stood. To solve such engineering problems, not only is theoretic
knowledge required but also extensive heuristic experience. Or-
ganizing and formalizing the theoretical knowledge and heuristic
experiences of multidisciplinary human experts is the rst  major
challenge. The building of an intelligent system that can rea-
son and make rational decisions based on induction/deduction of
theoretic knowledge and analysis of heuristic experiences is the
second major challenge.
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This paper presents the writers’ progress towards the devel-
opment of an intefligent infrastructure system that uses integrated
technologies of Case-Based Reasoning (CBR) and Rule-Based
Reasoning (RBR) to evaluate the performance of the CBB. The
system includes a case-base, a rule-base, a CBR agent, 2 RBR
agent and an inter-operational agent. The CBR agent and RBR
agent work with both case-base and rule-base. The case-base
and rule-base are inter-related through the index schemes. The
inter-operational agent evaluates the ontputs of the CBR agent
and RBR agent to make decisions. This agent can be an alter-
native human engineer. The CBR methodology is well suited
o formulate human experiences and phenomena that would not
lend themselves to organization and extraction in terms of rules.
In contrast, the theoretical kmowledge can be organized using
RBR technique. The combination of CBR and RBR technoto-
gies offers promise for developing a methodology for solving
complex real-life engineering operation problems. The CBR and
RBR agents are implemented and wrapped according to CORBA
(Common Object Request Broker Architecture} /DCCOM (Dis-
tributed Component Object Model) standards in order to commu-
nicate with each other and an external CORBA server or DCOM
server to acquire necessary knowledge.

INTRODUCTION

Case-Based Reasening {(CBR) techniques are a promising
for solving many engineering problems. CBR is a subeld of
Articial Intelligence (AlI) that is premised on the idea that past
problem-solving experiences can be reused and learned from
in solving new problems. Rule-Based Reasoning (RBR) iech-
niques are commonly used for developing expert systems in
terms of building rules for solving generic or specic  problems.



This paper discusses the use of combining case-based reasoning
and rule-based reasoning technigues to build a multi-reasoning
{multi-agent) system to solve a compiex domain-specific prob-
lem — namely, evaluating bridge performance in civil engineer-
ing applications. This paper presents a three-phase approach to
building such a system for this domain:

1. Knowledge Representation for Evaluating Bridge Perfor-
mance: building a knowledge-base;

2. Case-Based Reasoning Engine and Rule-Based Reasoning
Engine: design of the CBR reasoner and intergration of the
existing RBR teasoner;

3, Implementation Issues: illustrations of how a multi-agent
system can be used during the phase of evaluating bridge
performance.

Foundation of Case-Based Reasoning and Rule-Based
Reasoning Technigues

The Case-Based Reasoning Cycle (1) precisely defines a
methodology 1o build a CBR sysiem for a given domain. A
case-based reasoning system can be viewed as a model which is
a combination of a case-base and knowledge reasoning process
modules. These modules form a case-based reasoning shell, also
called a reasoner. They are the functions used to manipulate the
knowledge in the case-base and they act to process user inputs,
recall similar cases, refrieve the most similar case, evaluate and
adapt the tetrieved case and update the case memory. The mod-
vles interact with the case-base during processing.

Normmally, following problems are invoived in a CBR sys-
tem: knowledge acquisition, knowledge representation, case
retrieval, case adaptation and the learning mechanism.

1. Knowledge acquisition: How to acquire useful knowledge
from application problem domain,

2. Knowledge representation: How to use a formal language
to represent certain domain knowledge. The knowledge rep-~
resentation theory of case-based reasoning systems primar-
ily concerns how to structure knowledge stored in the case-
base to facilitate effective searching, matching, refrieving,
adapting and leaming. One influential knowledge represen-
tation model is the dynamic memory model (11}, 1t was de-
veloped by Schankand based on his theory, Memory Orga-
nization packet (MOP) theory.

3. Case retrieval: How to efficiently retrieve from the case-
base the case most similar to the curent problem. There
are two sub-processes invoived in case retrieval: one is to
retrieve a set of similar cases from case-base, another is to
find the most similar case in this set. The first sub-process is
accomplished by designing appropriate index scheme for the
domain problem, The second task is done using the Nearest
Neighbor Maiching Algorithm (NNM) (7).
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Figure 1. Cwverview of the Commodere Barry Bridge

4, Case Adaptation Strategies: After a CBR system retrieves
the most similar case from the case-base, it normally needs
to perform adaptation on this retrieved case. There are sev-
eral adaptation strategies which can be used in a CBR sys-
tem. They are Simple Substitution, Parameter Adjustment
and Constraints Satisfaction (7).

5. Learning Mechanism: Leaming is the last step in the Case-
Based Reasoning system. In a CBR system, after a new
problem is solved, the case-base is changed by adding the
new case into it. By doing that, the system can retain more
and more knowledge along with problem-solving augmen-
tation and achieve learning.

For a RBR system, foliowing problems are involved: knowl-
edge acquisition, knowledge representation, pattern match-
ing definition and execntion when pattern matching. The first
two problems have the same characteristics as CBR system. For
the next two problems, brief explainations are given below:

1. Pattern matching definition: How to find patterns which
are stored in rulebase. This is accomplished by imple-
menting Rete matching algorithm which is introduced ex-
tensively by Charles Forgy’s Phil) dissertation

2. Pattern matching definition: How to excute actions when
REBR inference finds applicable paiterns, The inference en-
gine toops through ail matched rules and fires exhaustively
until no more applicable rules in the rulebase.

Domain Problems and Knowledge Representation

Commodore Barry Bridge. The Commeodore Barry
Bridge {CBB) is owned by the Delaware River Port Author-
ity (DRPA). It links Chester, Pennsylvania with Bridgeponrt,
New Jersey and was opened to traffic in 1974, The bridge
is the 3rd longest cantilever truss bridge in the world with a
main span of 1,644 feet and a total bridge length of 13,912
feet. Figure 1 shows the principal structural system of the
CBB.

Presently, the Commaodore Barry Bridge carries more than
6 million vehicles annually, much of it heavy truck traffic



seeking to avoid the traffic congestion of the busy Philadel-
phia metropolitan area (3). The bridge owner wished to
objectively evaluate this aging and heavily loaded structure.

The Instrumented Monitoring of the Commedore Barry
Bridge. The Drexel Intelligent Infrastructure and Trans-
portation Safety Institute (DI}, working in partnership with
the DRPA, has been investigating the application of various
health monitoring techniques to the CBB. Health monitor-
ing, in the case of civil infrastructure systems, may be con-
sidered as measuring and tracking the operating and loading
environment of a structure and comresponding structural re-
sponses in order to detect and evaluate operational anoma-
lies and deterioration or damage that may impact service or
safety reliability. Designing a monitoring system for a long-
span bridge was a major challenge for the DIII researchers.
In the past two years, DI researchers have developed and
implemented a health monitoring system for the CBB. This
system was designed as a first-cut health monitoring sys-
tem that would measure global and local responses of the
structure in critical members and regions of the bridge, The
system takes advantage of in excess of 100 data channels to
continuously track the loading environment and numerons
structural responses of the bridge (3).

The Structural Identification of the Commodore Barry
Bridge. A primary step in implementing a successful
global health-monitoring system for a bridge is to accuraiely
conceptualize the structurat systems. Long-span bridges
typically have numerous complex structural details, bound-
ary, movement and continuity systems that require, at the
very minimum, identification and understanding from a con-
ceptual perspective in order to design an appropriate health-
monitoring system, These systems, when coupled with tran-
sient, non-stationary, nonlinear or unknown load effects and
responses, create a monitoring situation that is sufficiently
complex to justify a conceptuatization effort (3).
Conceptualization of the structural systems is most effi-
ciently accomplished through 3D CAD and solid model-
ing of the structure, site visits, photographs, and heuristics.
The Commodore Barry Bridge consists of sixty-three multi-
girder approach spans, eleven deck truss approach spans,
and a three span cantilevered through truss. The total length
of the bridge from abutment to abutment is 13,912 ft (3).
Selecting the most appropriate bridge members to monitor
was another major challenge for the DHI researchers.

The DIII rescarchers have conducted extensive studies to
identify critical bridge members. Correspondingly, sensors
are instailed at those critical locations to monitor important
parameters. Figure 2 shows locations of critical members
and their instrumentation.
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Figure 2. Structural identification And Instrumentation

Why Is An Intelligent Reasoning System Necessary for
Health Monitoring? In health monitoring of large struc-
tural or infrastructure systems which have the probability of
brittle failure modes, engineers are very interested in "intei-
ligent sentries”. In the case of the CBB, the researchers have
developed sensor systems to monitor the local conditions at
the critical regions that are susceptible to fatigue cracking.
If these systems sense an incipient cracking, they should in-
form a mman. In this type of effort, a faise positive event is
very dangerous while 2 false negative event is totally unac-
ceptable. Therefore, the intelligent agent should be able to
follow redundant reasoning and fusion of data from various
sensors to rule against false positive while being cognizant
of false negative.

The second reason an intelligent agent is needed is for de-
tecting and interpreting the initiation of conditions favorable
to deterioration. For example, analysis of internal humidity
and electro-chemical characteristics for concrete elements
could establish the onset of reinforcing steel corrosion.
Since a health monitor or supervisory control and data ac-
quisition (SCADA} system for a major bridge or a major
infrastructure system must viilize many sensors distributed
over a large geometric domain, it is impossible for humans
to continuously watch for continuousty watch for incidents,
events and complex phenomena pointing to out-of-ordinary
incidents, events and complex phenomena pointing to out-
of-ordinary conditions with the structure. The only way a
SCADA can become completely effective is if it has seif-
intelligence to alert human managers when neesded.

Multi-Disciplinary Research. The monitor system for
CBB has been functioning since 1998, and additional data
has been obtained by many controlled tests. Data has been
interpreted by the researchers for characterizing the mechan-
ical characteristics and the loading and response environ-
ment of the bridge structure in terms of a 3D finite-clement



model. Researchers continue recording and viewing data
from continuous measurements in real-time, and from con-
trolled load tests ané ambient vibration tests that are con-
ducted intermittenity. The data is used for calibrating the
analytical model and validating its reliability for simulating
phenomena at the regional and element levels (2). (4), (3),
(8).

Research at DII is conducted in three distinct areas, The
first research direction involves investigating, designing and
implementing health monitoring systems for civil infrastruc-
ture systems. This research is primarily conducted by civil
and electrical engineers. The second research area involves
structural identification and analysis of instrumented civil
infrastructure systems. This requires a team of civil, me-
chanical, and electrical engineers. The third research area
focuses on intergration. This research takes advantage of
computer science techniques to fuse distrubuted applica-
tions. In addition, knowledge engineering methodology is
used to compile, structure and mode] human knowledge to
sobve complicated civil infrastructure problems. This re-
search requires the efforts of a computer sofiware engineer.
This paper discusses some of DIII’s efforts in the third re-
search area.

Knowledge Representation of the CBB . Because of the
inherent complexity of the CBB bridge project, the knowl-
edge space in this domain is incomplete and dynamic. I
emcompasses civil engineering, electrical engineering and
computer science. It is not practical to fully compile and
model the knowledge in this project demain. However, ac-
quiring and modeling the primary knowledge for major com-
ponts of the project from human engineer is approachable.
The major components of CBB project include health mon-
itoring instrumentation and structural analysis. In this pa-
per, a fragment of the knowledge for structural analysis of
the CBB and knowledge representation of it is presented.
Knowledge acquisition is achieved by specifying only the
important features of the problem. Features are only col-
lected if they help solve the specific problem. Other know}-
edge that is not directly refated to solving the problem is
discarded. In this approach, a set of important feafures is
predefined for the problem, and knowledge acquisition is
done manually by a knowledge engineer. Because of re-
strictions mentioned above, the system will have some limi-
tations. These limitations will be briefly discussed in the last
section

The researchers have conducted extensive research on Case-
Based Reasoning (CBR) and Rule-Based Reasoning (RBR)
methodologies. Both of these methods provide a very
promising way to organize, construct and program human
knowledge into a system. This system can contain human
experience, theroretical knowledge and respond to the real
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world based on build-in reasoning mechanisms.

A language called CASL (5)is used to represent knowledge
pertaining to CBB project in this case-base. The structure
of the case-base is based on Memory Organization Packet
(MOP) theory (11).

A language called CLIPS (9) is used to build the rule-base.
This language provides three paradigms to organize knowl-
edge which are rule-based, object-oriented and proceduze-
based.

Case-Based Reasoning and Rule-Based Reason-
Ing Engines

A reasoning engine is software agemt which perceives
knowledge from the knowledge base, conducts logic infer-
ence and reasoning and concludes results. In general, a rea-
soning engine is used to reason on a specific kind of knowl-
edge base, For example, CLIPS (9) is a tool which provides
language used to build a rule-base and a rule-hased infer-
ence engine is used to reason on ihe rule-base built by this
language.

The case-based reasoning engine is the reasoning system
which atlows a researcher to use archived cases to selve do-
main problems. Once domain knowledge has been nsed to
build the case-base, organize memory, build indices, ete.,
the reasoning engine can execute searches based on the in-
dex scheme. The engine can alse perform other reasoning
processes, including case retrieval, adaptation and system
learning.

The rule-based reasoning engine is the reasoning system
which reasons on a tule-base. The domain knowledge
is compiled, modeled and structured in terms of a series
of rules. The rule-based reasoning engine automatically
matches facts against patterns and determines which rules
are applicable. If they are, the engine performs certain ae-
tions specified by knowledge base.

KNOWLEDGE REPRESENTATION FOR CBB
BRIDGE PERFORMANCE EVALUATION

Problem Formulation

The CBB project contains two major components. Cne of
them is structural identification and analysis of the bridge.
The other is health monitoting of the bridge. In this paper,
only a small segment of the dorsain problem related te the
former will be presented as an example. The objective of the
structural identification approach is to charactenize the as-is
structural condition and the loading environment of a bridge
through experimental informatior: and analytical modeling.
Experimental data acquired from instrumentation is com-
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Figure 3. Strustural And Loading System ldentification

Figure 4. Finite Elerment Model of the Commodore Barry Bridge

pared to results obtained from an analytical modei of the
bridge. The results can be used to evaluate the correciness
and reliability of the analytical model, to evaluate the per-
formance critical bridge elements, and to issue notifications
regarding the safety of structures,

Several 3D Finite Flement (FE) models of the CBB were
developed to serve as toals for engineering decisions. The
analytical models incorporate the contribution of ail force
resisting elements and mechanisms, particularly those asso~
ciated with out-of-plane elements, into the analytical model.
In this manner, these eiements and mechanisms can con-
tribute to the behavior of the model as they do in the actual
structure, enabling more realistic and accurate simulations
of retrofits, modifications, and loading scenarios (4). The FE
models were developed in several stages. First, the structural
systems of the bridge were conceptualized by review the de-
sign calculations and drawings, shop drawings and site visit.
Second, the siructure was re-consiructed using a 3D CAD
model. Finally, the CAD model was transformed into & FE
model using a commercial software program. Figure 3 sum-
marizes the devel opment stages and Figure 4 shows the com-
plete 3D FE model of the through truss structure.
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DIII researchers conducted a controlied load on the bridge
to measure the critical responses. The measured responses
provide information necessary to verify analytical models
of the structure. The controlled load test on Commodore
Barry Bridge consisted of a static load test at pre-identified
locations and a crawl speed test. The Commodore Barry
Bridge was loaded statically by positioning two large cranes
in various configurations. The measured responses included
strain measurements for vertical truss members, lower chord
truss members, upper chord truss members, floor beams, and
for deck stringers near the hangers and midspan regions of
the through truss.

The bridge member responses at several locations were mea-
sured under a 108 kip crane loading for severat loading con-
figurations. The loading configurations were also simulated
in the finite element model to obtain analytical responses,
which were then compared with the experimental results.
The finite element model was found to represent the mea-
sured response of the bridge quite well. Examples of model
validation and calibration are given in this section along with
examples of measurements that illustrate the complexities
associated with the response of the bridge. The maximum
incremental strain in one hanger due to the prescribed load-
ing condition was measured to be 43.23 microstrain ( 1.25
ksi), After simulaiing the same loading condition in the
maodel, the strain value was obtained to be 45.5 microstain.
Some formula related above result are given as follows:

o= d_h_r
T4
and
£ = E
TE
where
o: Stress (lgsi)
g: Strain ;)

A: Cross sectional area of hanger (in%)
N: Axial Yoad (kips)
E: Young's modutus (ksi)

In the following sections, the hanger analysis of Commodore
Bridge will serve as an example to show how to represent the
knowledge related to this analysis problem. How to reason
knowledge pertaining to it using multi-agent inference en-
gines witl also be discussed below.



The CBR Representation Schema

The knowledge pertaining to CBB project can be repre-
sented in any kind of representing language. The reason that
Case-Based Reasoning Language (5} CASL}) is chosen to
represent our domain knowledge is becanse the knowledge
associated problem domain is extremely dynamic and uncer-
tain. Tremendous heuristic experiences are needed to solve
practical problems. CASL is a language specially good for
mode] and structure heuristic experiences. The contents of a
case-base are described in a file known as a case file, using
the language CASL. The reasoner uses this case file to cre-
ate a case-base in the computer’s memory, which can then
be accessed and adapted in order to solve problems using
Case-Based Reasoning mechanism.

Like any other representing language, CASL has strict syn-
tax, semantics, keywords and operators. The syntax of
CASL specifies the grammar ruies of organizing knowledge,
and the semantics of CASL give the concise inferpretation
of a sentence written in CASL with correct grammar. CASL
defines some basic types in the language: identifiers, strings,
nmumbers and operators, etc..

CASL normally divides a case-base into several modules,
each of which has its own syntax features and semantic ex-
planations,

CASL semantics define the meaning of a sentence by speci-
fying the interpretation of the keywords and basic types, and
specifying the meanings of operators. In the syntax blocks
of CASL, all keywords and literals are given in bold type.
A small example about hanger analysis is provided to show
how to use CASL to represent domain knowledge. When a
problem is presented, certain conditions are specified. These
specifications are the input to the problem sotver, or CBR
reasoner, The CASL structures the knowledge about in-
put problems by defining the primary features of a problem.
Every primary feature has a weight associating to it. This
weight vaule indicates the impertance of this feature.

The brief explanations of primary modules and examples are
given below:

1. Introduction. This module defines introductory text
which is displayved when the reasoning process {reasoner)
is run. The purpose of the text is to help the user understand
the contents of the case-base or anything ¢lse of note.

2. The Case Definition. The purpose of this block is to
define the probiem features contained in a case.

In the hanger analysis problem, the most important features
are axial forces and bridge type. These features’ weight val-
ues are set to be 5 (reference weight). The cross sectional
area of hanger and Young’s modulus etc., are not that impor-
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tant, comparatively speaking, Therefore, their weight values
are set to be 0 (reference weight). A sample case definition
using CASL is given below:

case definition is
field axial-force type is (number) weight is 5;

field bridge-type type is (Long-Span (Suspension, Cable-
Stayed, Truss, Arch), Short-8pan, Culvert) weight is 5;

field axiai-force type is (number) weight is 5;

field cross-section type is (number) weight is 0;
field Youngs-modulus type is number weight is 0;
field Experimental Data type is mmmber weight is (;
end;

3. Index Definition. The purpose of this module is to de-
fine which fields are to be used as indices.

This part defines the fields which are used as indices when
searching for a matching case. The index scheme defines
the methods by which the reasoner should access the case
memory. Indices are intended to streamline the matching
process. The index features are parts of the new problem
specification. For example, we use the features axial-force
and Bridge-type as main indices to scarch the knowledge-
base. The sample representation is given below:

index definition is
index on axial-force;
index on bridge-type;

4, The Adaptation Rule Definition.
block is to define rules used to modify a retrieved case from
the case-base to make it {it the current probiem specifica-
tions. The global repair rule definition defined in this mod-
ule allows adaptation rules to be applied on any modified
case. The rules defined here are derived from domain knowl-
edge, formulae and constraints,

When the old hanger analysis whose “description of prob-
lem definition” part is the most “similar” to the current prob-
lem definition is retrieved from the case-base, its solution
part must be modified to fit the current problem definition.
The reasoner performs adaptations to an old solution accord-
ing to certain rules defined by domain experts. The repair
rule definition is biock of CASL can be used to define those
rules. In the hanger analysis problem, the following rules
(strategics) are defined:

The purpose of this

(a) Perform simple parameter substitution: substitute pa-
rameters of old problem definitien into new user input.




(b) Perform old solution adjustment to make it fit substi-
tuted user input (current problem} according to domain
formuiae.

{¢) Check global constraints defined in the case-base to
guarantee that no conflicts resalt.

In the sample given in Algorithm 1, the change value I is an
adaptation rule. It tests a certain condition (represented by
a formula) first; when the condition is satisfied, the action is
fired.

Algorithm 1: Adaptation knowledge representation:
{1} repair rule definition is
(2) repair rule change value 1 is

{3) when
{4) axial-force > radial-force
(3) then

(6) evaluate Stress Of Hanger o to
{7) evaluate Strain Of Hanger e to 5
(8) repair;

(9 end;

(10) end;

5. Case Instance Definition. The purpose of this block
is to define the structure of & case instance. A case must
contain two parts: the problem part and the solution part.
The local repair rule definition defined in this medule allows
adaptation rules to be associated with a case. These rules are
invoked after the global adaptations have run their course.
The past experiences of hanger analysis for applications are
stored in the case-base. Representation of these experiences
requires the design of certain structures which can represent
cases property. Normaily, an experience (case) inchudes a
problem statement part and a solution part. The case in-
stance is block of CASL provides a kind of structure and
function. This block defines the same structure of problem
statement as the case definition is block defines.

A sample representation of a case is Aigorithm 2:

The RBR Representation Schema

CLIPS (C Language Integrated Production System) is an
gxpert system tool developed by the Software Technology
Branch (STB), NASA/Johnson Space Center (9) . 1t is de-
signed to facilitate the development of software to modei
human knowledge or expertise. There are threc ways to rep-
resent knowledge using CLIPS in a rutebase:
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Algorithm 2: Case Instance Representation:
(1) case instance Hanger Analysis is
(2) bridge-type = Truss;

(3) axial-load = N;

(4) cross-section = A;

(5) Young-Modulus = E;

(6) Experimenta Data = D;

) solution is

8 Stress = 81;

(9) Strain = 82;

(10}  permissable capacity= C;

(11)  local repair rule definition is
(12}  repairrulerule.] is

(13)  when

(14)  bridge-type # Truss

(i5)  then

(16)  pr 'Abandon your selection ! ’;
(i7)  pr 'This case can not be repaired to let you use!’;
(18)  reselect;

(19}  repasir;

(20) end;

(21)  end;

{2) Rule-Based Knowledge Representation: In this
paradigm, knowledge is represented as a series rules.
Rules are used to represent heuristics which specify a
set of actions to be performed for a given situation. A
rule is composed of a if part and then part. The if part
is a set of patterns which which specify the facts which
cause the rule to be applicable. The process of match-
ing facts to petterns is called pattern matching (9). The
built-in inference engine matches facts against patierns
and determines which rules are applicable.

(b) Object-Oriented Knowledge Representation: In
this paradigm, knowledge is represented as a se-
ries modular components which inherit object-orented
mechanism. For example, this mechanism makes hier-
archy knowledge models possible.

(c) Procedural Knowledge representation: In this
paradigm, knowledge is represented in terms of pro-
cedural style like conventional language C, C++ and
Pasal etc. This capability is extremely useful when
knowledge can not be represented using rules or
object-oriented mechanism,

Example of Rule-Based Knowledge Representation.
The following example shows how & rule-based represen-
tation is used for the CBB hanger analtysis. The exampie
shows that when the RBR inference engine finds experimen-
tal data from instrumented hanger that is much larger than



analytical data from FE model, it fires and generates warn-

ing signat.

Algorithm 3: Rule-based representation by CLIPS:
8 (defrule Warning-Signal)

(2 {experimental-data-isData)

3 {analysis-data-isA-Data)

4) assert(Something wrong on the CBB bridge!)

MULTI-AGENT REASONING SYSTEM
System Overview

The case-based reasoning engine, also called reasoner,
takes probiem specifications and a case-base file as its in-
puts, performs reasoning about the problem, and returns an
answer to the user automatically. The reasoning engine of
a case-based system consists of four process modules; each
of those modules performs certain functions. The modules
interact with the case-base and form a reasoning cycle. The
first module, Refrieved case, tekes the current problem spee-
ifications as input and outputs a retrieved case. The second
module, Solfved case, decides whether a retrieved case needs
to be adapted. This module either returas to the user a solu-
tion without further modification or passes a solution to the
next module which will perform adaptation on the case. The
third module, Repaired case, performs this adaptation and
returns an adapted case to the next module. The fourth mod-
ule, Learned case, decides whether this new resolved case
needs to be stored in the case-base. The kernel of CBR en-
gine used in the problem domain was developed by Center
for Intelligent System. University of Wales (3). The primary
author has developed a wrapper for this engine, added extra
features for this engine and has added extra features includ-
ing a Graphical User Interface (10).

The rule-based reasoning engine which is part of the CLIPS
sysiem, also called inference engine, was developed by
NASA’s Johnson Space Center (9). The CLIPS was a for-
ward chaining rule language based on the Refe patiern
matching algorithm. The inference engine was impiemented
as different modules. Every module has different functions
and purposes. Detailed information about these modules is
provided at the CLIPS website (9). Only basic ideas of this
inference engine are introduced here. When the inference
engine is invoked (perceives input from outside world), it au-
tomatically looks at the ruiebase and matches facts against
patterns which are defined by the knowledge engineer. It
then determines which rules are applicable. It selects a rule
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Figure 5. Multi-Agent Reasoning System Architecture

and then the actions of the selected rule are executed. The
inference engine then selects another rule and executes its
actions. This process continues until no applicable rules re-
main (9).

The following sections present how the writers will integrate
and implement these modules and the RBR inference en-
gine, Only a detailed introduction of CBR reasoning engine
is presented here.

System Architechures

Main System Architecture, Figure 5 shows the architech-
ture of multi-agent reasoning system.

There are seven modules in the system. Each medule per-
forms specific tasks and functions.

{a) CBB Bridge Data Acquisition Module: This module
collects data from instrumented sensors on the CBB
bridge and performs buffering and raw data storage
functions. The module consists of several different
data acquisition hardware and software systems ac-
quired from a variety of vendors. Some of the ven-
dors provide built-in functions which can be integrated
with commercial data processing software. This makes
communication between the CBB Bridge Dafta Acqui-
sition Module and the Data Preprocessing Compo-
nent discussed beiow possible. For example, the OP-
TIM Electronics data acquisition system (6) provides



OLE interface that enables the system to communicate
with the commercial data processing software Lab-
View which also supports the OLE standard.

{b) Data Preprocessing Component: This component
performs data preprocessing. I takes the CBB Bridge
Data Acquisition Module as input, checks data quality,
eliminates electrical signal errors and conducts prelim-
inary data analysis and other related tasks. This mod-
ule’s kernel could be some data processing software
like LabView. The module outputs data either imme-
diately to a display through some interface like web
browser or automatically to a database. For exam-
pie, the former can be implemented through LabView
that can read data from OPTIM and send it to a web
browser for direct and immediate display to the user.
The latter can be implemented by writing a customized
program which reads data from LabView’s buffer or
from its data storage disk. The program then routes
the data to an archived database.

{c) Case-Based Reasoning Engine: This module per-
forms CBR reasoning. It perceives knowledge from
casebase, extracts data from both the Darg Preprocess-
ing Component , an archived database and the Com-
mon Indice Component. Tt performns reasoning based
on all the information mentioned above and returns
reasoning results to the Decision Making Agent,

{d) Rule-Based Inference Engine: This module performs
RBR reasoning. It perceives knowledge from the rule-
base, extracts data from both the Data Preprocessing
Component , an archived database and Common In-
dice Companent. It performs reasoning based on all
the information mentioned above and returns reason-
ing results to Decision Making Agent which will be
introduced below. This module will be presented in
more detail later. .

(¢) Common Indice Component: This component serves
as hub to connect CBR system and RBR system to-
gether. It takes the user’s problem as input, checks im-
portant features of domain problem and outputs these
features to the CBR engine and the RBR engine, It
triggers both engines through industry standard proto-
cols such as COM(DCOM) which allows distributed
applications to communicate with each other. Since
the source code for the CBR and RBR engines are pub-
licly avaitable and they were created using C language,
it ts not difficult to program a wrapper with a standard
interface for both engines,

(f) Decision Making Component: This component col-
lects the output from the CBR reascning engine and
the RBR inference engine. The compoenent can be a
software entity or a human entity. The entity judges
the output from both engines and conducts reasonable
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actions. For exampie, a software entity can issue wam-
ings based on its judge from outputs of inference en-
gines to warn the human manager that some members
of the bridge reed to be reinforced or that the bridge
should be closed due to some catastrophic event.

Reasong Process of CBR Engine

The Aow-chart in Figure 6 shows the main algorithm behind
the implementation of CBR reasoning engine. The two hol-
low arrows in the figure illustrate that the reasoning engine
must interact with the case-base.

The flow-chart shows that the requirements of a module can
be broken into pieces or procedures called by the main func-
tion. It also shows that a CBR engine forms a reasoning
loop. This reasoning loop begins with the procedure User
Specification and ends with the procedure 4dd Case. Pri-
mary procedures used in the main algorithm are discussed
below separately.

Building the Index

The performance of a CBR system is determined by the
CBR reasoning engine whose efficiency is in turn deter-
mined by the design of the index scheme and the case-base
memory organization. The index scheme design includes
how to specify index features and how to build them in com-
puter memory. The index features are set by domain ex-
perts and are represented by the biock index definition is
of CASL. The procedure Build Indices takes the representa-
tions of index features as input and uses these to build the
index scheme, A linked-list data structure was chosen to
hold the index feature input. The procedure Build Indices
places all the index features into the linked-list, and at the
same time, builds the case-base memory organization, Fig-
ure 7 illustrates these ideas.
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In this CBR system for the hanger analysis problem, two
features have been specified as index features: bridge-fype
and axial-load. Each index feature is a node of the linked-
list and the data type for the nodes is the struct type in C.
The fields of the struct are used to hold attributes of the
mdex features. Figure 7 shows this data structure for the
index features and case-base memory. The procedure Build
Index first links the index features shaft diameter and load
direction. It then checks every attribute of the index features,
For each attribute, Build Index searches for all the cases with
the same attribute value in the case-base file and links afl of
these together.

Case Matching, Ranking and Retrieving

The purpose of tuilding an index scheme is to speed up
searching, Here, searching means to find a set of cases from
the case-base which are similar to the current input case.
However, the goal is to find the case that has the maximum
similarity to the input case. Thus, a mechanism to rank the
similarity of cases is needed. In this section, the procedure
necessary to accomplish two goals (finding a similar case set
and finding the most similar case in this set) is discussed.

First, a mathematical modei is presented to demonstrate how
to find a set of similar cases in the case-base. What are simi-
lar cases? Given an input case with certain index features
and their attributes, similar cases are those cases whose
index features and attributes are exactiy the same 1s the
corresponding input case’s. Figure 8 shows these ideas.

The top portion of the Figure 8 illustrates the mathematical
model for finding similar cases. The left and right circles
represent attributes F(4) and F(B) of index features 4 and B
of an input case respectively. The C(n) represents a case . If
the left circle includes C(&),C(d)},C(k) and C{a), which are
the cases with attribute F(4) of feature 4, and the right circle

181

Mathematical
Model for
Searching
Similar Cases

fC(m), Cy } F(A) N F(B)

Figure 8. The mathematical model and an exampie for searching similar
cases

includes C{#),C(),C{a} and C{k), which are the cases with
attribute F(B) of feature B, then their intersection contains
cases C(a) and C(h), which have both aitribute F{4) and
F(B). This can be represented in set theory as:

{C(a),C(h)} CF(A)NF(B)

The bottom portion of Figure 8 provides a corresponding
exampie to illustrates how this process occurs in the case-
base.

After all similar cases are found, a mechanism to find the
most similar case in this set is needed. In the system, the
Nearest Neighboer Matching algorithm (NNM) (7). Fig-
ure 9 illustrates how this algorithm works in the CBR system
for the hanger analysis. To simplify the discussion, it is as-
sumed that all of the component loads applied to the hangers
are at in the same direction.

The basic idea of the NNM algorithm is to compare the at-
tribute value of each feature for each case in the set of similar
cases to every corresponding feature’s attribute of the input
case, calculate the comparison vaiues and then sum them for
each case to get a total comparison value.

In the upper portion of Figure 9, the circles represent cases,
the dots represent attribute values of features, index { rep-
resents the input case, and index j represents cases in the
set of similar cases. The index k represents the features in 2
case. The case 4 and case B in the figure are the cases from
the similar cases’ set. The function 4(k}(i/) represents the
attribute’s comparison value of one of the features (feature
k) between the input case and case 4, which is equivalent to
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the following formula (7):
W(if) = Sim(F (k) (R)i, F (k) 1}])

where:

k: a feature of a case.

W(ij): the weight of a feature, defined in the case-base file.
Sim{F(k){R)i,F(&)(1)j): the degree of similarity between
one of the features in the input case and the corresponding
feature in a case from the similar case set.

The total attributes’ comparison value for a case is D(kNIA),
which is equal to the numeric function

2 W(ij) + Sim(F (k) (R)i, F (k) (T} j)
k=1

After finishing all calculations, the NNM aigorithm selects
the case which has the kighest value of D(k)(i7) to be the
most similar case.

The key component of the NNM algorithm is the catcula-
tion of an atiribute’s comparison value for a feature between
a similar case and the input case. A matrix called the rele-
vance matrix, shown in the lower part of Figure 9, is used
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to explain how to caleutate every feature’s attribute compar-
ison value, In the matrix, F(k){R)i means “the feature k of
a case from the similar case set which has possible attribute
i, where the range of i can be from i to some finite num-
ber”. F(k){I)j has a similar meaning except in reference
to the input case. So, the first row of the matrix represents
all the possible atiributes of feature & of a similar case, and
the first column represents all the possible atiributes of fea-
ture & of the input case. The intersection of row and column
is the comparison value of the feature &. The #{ij) is the
weight of a feature in a similar case. The degree of similar-
ity Sim{F (k}{R)i, F{k){I}f) has three possible values. First,
if two features match exactly, the degree of similarity equals
1. Second, if two abstract symbols are similar, its value is i—.
Third, if two numbers are similar (i.e., both fall within the
range defined in the modification block), then a value is cal-
culated which reflects how close they are in proportion to the
range. Then, the Sim(F{k)(R)i,F(k)(f}j) can be caleulated
by:

e

IR

where: Ad is the difference of the feature values be-
tween the input case and the retrieved case and Ar 15
the difference range value. For example, if the attribute
value of feature axial load for the input case is 64 Kkips,
and the corresponding value for a similar case is 84 kips
Newtons, then Ad = 84-64=20. If the definition for the
range of similarity is from 44 to 94, then Ar = 94-44=50.
.§gmﬂarity between 64{input} and 84{a similar case) = 1 —
& =0.6

f&algorithm 4 defines the functions needed to find simi-
lar cases and the most similar case as mentioned above.
The procedure fndex List_Searching( ) performs search-
ing on the linked-list of index features. The procedure
Case_List_Searching( ) searches out cases whose aitribute
value for certain features is the same as the input case’s. The
procedure Computing Weight Cases{ ) performs calculates
the weight of a retrieved case and returns this value, The
procedure Evaluating Similar Cases( ) ranks a case with
a weight. The procedure Retrieving Heaviest Casef ) re-
trieves the case with the highest rank and returns this.

Adaptation of Cases

It is rare for a retricved case to be exactly the same as the
newly defined problem. Most of the time the retrieved case
1§ only a similar situation, and so preblem definitions and
corresponding solutions rust be modified so that the modi-
fied case fully fits the current situation and its solution fulty



Algorithm 4: Case matching, ranking and retrieving:
Input: User’s input problem specification.

Output: The retrieved case with highest
weight.
MATCHING_RANKING_RETRIEVING(Userinput)
D begin

(2) while true

(3) do

4 Index List_Searchingf( );

(35) Case_List_Searching( );

(6) Computing_Weight _Cases( );

M if Case_Matching Exact = True;
(8) return Retrieving Case();

(9) else

(1) Evaluating Similar.Cases( );
(i) Retrieving _Heaviest_Case( );
{12) end

satisfies the current problem requirements. This procedure
as & whole is called the case adaptation (repair) process. A
series of rules are defined for adapting cases. These rules
are provided by domain experts or domain axioms and are
applied to each case whenever it is necessary.

Adaptation rules are divided into global rules and local rules
The reasoner uses global rules to examine the problem fields
and solution fields of the retrieved case. These rules are also
used to adapt the parameters of the refrieved case and check
constraint satisfaction conditions which are specified by the
knowledge-base. If there are any constraint conflicts, the
repair rules provide a new problem-solving proposal. Oth-
erwise, they adapt the solution of the retrieved case to the
new probiem. Sample adaptation rules for global repair are
described in Algerithm 1.

Figure 10 shows that a linked-iist data structure is used to
store these adaptation rules. In the figure, every node has
two fields: one stores the condition of a rule, the other stores
the action, The procedure given in Algorithm 5 scans the
rule Jist repeatedly as it performs adaptation on a retrieved
case; if the condition part is true, it executes the correspond-
ing actions on the case.

FUTURE WORK

This research touched upon both AL/CBR/RBR and bridge
engineering domains. The system discussed can also serve
as a template for other engineering domains. The following
areas are envisioned for future research.

(a) Implementation issues: Several challenges must be
overcome in order to implement a multi-agent sys-
tem. The first challenge relates to knowledge engi-
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Algorithm §: Algorithm for case adaptation:
Input: Retrieved case.

Output: The modified case.
CASE_ADAPTATION(RetrievedCase)

(1)  begin

(2) while true

(3) do

(4) if Global Rules = True;

(3) Finding Global Rule Headpointer( );
6) Searching Global_Rules( );

(N Apply Modifying Retrieved Case( );
(8) Parametric_Adaptation( );

9 Constraints_Adaptation{ );

(10) Evaluating Solutions( );

an return Modified_Satisfied Case;
(12) end

neering problems which are discussed below. An-
other challenge arises from the fact that the system is
composed of different modules, components and ap-
plications which are eventually distributed on different
conmputers and on a network. Developing efficient in-
terfaces and a wrapper to permit them to effectively
communicate with each other is a major hurdle,

(b) Knowledge engineering issnes: Because of the lim-
itations of the CASL and CLIPS used to build our
gystem, there are still many limitations in expressing
problem solving intent. The case collection process is
quite complicated and ineffictent, and case-base main-
tenance is very unstructured. This makes debugging
the case-base very difficult. The rule scope defined for
the project domain is extensive because of the com-
plexity of the CBB project. Improved methodologies
for case collection, rule collection and better protocols



to maintain the case-base and rule-base are needed.

(¢) Knowledge acquisition issues: The authors built at-
tribute (features) pairs during the initial design to allow
the user to interactively input knowledge. If the sys-
tem is expanded (especially cross-domain), it would be
very difficult to enumerate all the features during de-
sign time to cover any and atl possible problem specifi-
cattons. Therefore, the development of an autonomous
knowledge acquisition system is a future chailenge.

(d} Indexing issuwes: The authors built a fixed feature-
based index scheme during the initial design to speed
up searching, However, as stated above, if the sys-
tem is expanded, it would be impossible to optimize
this choice of index features. as the system is utilized,
many additional features may become important pri-
mary design factors. Since these features are not ini-
tially coded into the case-base or rule-base, the sys-
tem will fail to find cases or match rutes which have
these impottant features. Developing a dynamic index
scheme that will address this situation is an additional
research need.

{e) Graphical reasoning issues: In the Commodore
Barry Bridge project domain, many problems are
solved by heuristic experience. Such experience is
routinely relied on for interpreting processed images
or graphics; therefore, 2 graphical inference capability
becomes necessary. How to combine fextual reason-
ing procedures with graphical reasoning procedures is
another very important issue,

CONCLUSIONS '
This paper discussed a system that uses Case-Based Rea-
soning and Rule-Based Reasoning as both a cognitive model
and problem solving methodology to deal with a bridge en-
gineering problem for civil engineering applications. The
authors believe that this work will produce several insights
into how AT, CBR and RBR. techniques can be betier applied
to more realistic engineering problems:

(a) Knowledge Capture: Because the knowledge space
for the Commodore Barry Bridge domain is extremety
incomplete and dynamic, it is difficult to strictly rely
on formalizing general, 4 priori, rules to help engi-
neers to solve problems or automate the problem sotv-
ing process, But using CBR techniques, the extensive
expenience of many experts can be stored in a case
library. In contrast, rule-based techniques can com-
pensate for the shortcomings of case-based techniques.
Through exploration of a useful rule-based tool like
CLIPS, the knowledge can be modeled using object-
oriented mechanism,
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(b) Adaptability: CBR techniques can integrate knowl-
edge acquisition, reasoning mechanisms, kmowledge
storage and learning in one platform. Therefore, a sys-
tem using CBR techniques can possibly grow and ex-
pand to encompass a wider variety of assemblies with-
out changing the fundamental system structure.

{c) Augmenting Intelligence: The proposed system,
rather than being completely autonomous, interacts
with the user to obtain knowledge. It provides the flex-
ibility to draw conclusions either from the system it~
self automatically or by allowing the human engineer
1o decide which actions he/she should take.

(d) Human-Guided Search: The system also provides
the flexibility to allow the engineer to loosen index
constraints to continue reasoning when an exact search
fails. In this manner, the engineer has the most oppor-
tunities to obtain a solution that is useful for his/her
current probiem.
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Abstract

Individual autonomous components can be constructed using smple
behaviors based entirdly on localy available information. Simple
components aggregate to form complex systems with complex
behaviors. Artificial life research has proposed guidelines for
condructing colonies of atonomous systems. Simulations
mimicking biological sysems show these guidelines adequately
explain the behavior of many insect species. The complexity of
aggregated behavior often depends on stigmergy. Stigmergy occurs
when behaviors by individuals modify the environment while being
regulated by the environment's state. Stigmergy has generaly been
studied for the forward problem predicting the consequences of local
behaviors. It is also applicable to the backward problem synthesizing
loca behaviors to fulfill a globa need. The concept provides an
objective measure of intelligence for natural and synthetic systems. A
system’s intelligence is measured by its amount of effective
stigmergy. It not only adapts to a changing environment, but dso
modifies the environment to suit the system’s needs and goals.

Keywords' intelligence metrics, artificial life, stigmergy,

distributed intelligence

1. INTRODUCTION

“ Self-centered — someone who does not think about me.” -
Coluche (French Comedian

Egotistically, most people consider another person
intelligent when the other person agrees with them. The
Turing test isan egregious exampl e of thistendency. A system
is intelligent, when its behavior resembles human behavior.
While flattering, this measure is not very objective.
Objectively, intelligence is a combination of many attributes.
These include the ahility to:

- Achievegods

Compete with others

Cooperate with others

Develop new unexpected behaviors
Adapt to achanging environment

These attributes are necessary but not sufficient for
describing intelligence. A truly intelligent system should also
interact with its environment, modifying the environment to

its advantage. This ability is based on what is called stigmergy

by Grassé [16].

Grassé coined the term stigmergy while studying highly
evolved societies of cooperating individuals. The societies
shared the following characteristics:

- Construction of climate controlled communal housing
Individuals altruistically sacrifice themselves for the
common good
Equitable distribution of work among their members
Division of tasks among castes of specialized workers
Domestication of other species
Creation of logistic networks to support cities and war
campaigns

These societies belong to the most universally successful

species on earth, controlling most of the air and ground space.

They are distinguished by having six legs.

A collective view of intelligence is not limited to the
behaviors of insect societies. Cellular Automata research
shows how networks of extremely simple automata
collectively emulate general computation engines, such as
Turing and von Neumann machines [27]. Connectionist
methodsin artificial intelligence create complex behaviorsina
network of extremely simple computation engines [10].
Minsky's Society of Mind describes human behavior emerging
from interactions among multiple simpler individual entities
[19].

Bonabeau’ swork [3, 4, 5] provides a starting point for an
objective definition and measure of intelligence. An
individual, or society of individuals, is intelligent when it
exhibitsasignificant degree of stigmergy. It not only adaptsto
its environment, it interacts with the environment, forcing the
environment to adapt to its needs and goals. Thisinteraction is
not purely deterministic but results in rew behaviors that
advance the system towardsits goal.

The rest of this paper is organized as follows: Section 2
discusses rel evant aspects of cellular automata, on appropriate
formalism for studying interactions of distributed systems.
Relevant studies of insect colonies are provided in section 3,
aong with the origina concept of stigmergy. Section 4
discusses applications of pheromones and stigmergy to
synthetic systems. Some applications reproduce lifelike
behaviors. Other applications create synthetic environments
using stigmergy-like control mechanisms. Section 5 describes



adistributed system where simple behaviors of local systems
combine to produce complex adaptive behavior for the
network. A possible stigmergy scale is further discussed in
section 6, which concludes the paper.

2. CELLULAR AUTOMATA

A cédlular automata (CA) is a synchronously interacting
set of elements (network nodes) defined as a synchronous
network of abstract machines[1]. A CA isdefined by:

d the dimension of the automata

r the radius of an element of the automata

d the transition rule of the automata

sthe set of states of an element of the automata
An element’s (node's) behavior is a function of its interna
state and those of neighboring nodes as defined by d. The
simplest instance of a CA is uniform has adimension of 1, a
radius of 1, and abinary set of states. In th|ssmplect casefor
each individual cell there are a total of 2° possible
configurations of a node’'s neighborhood at any time step.
Each configuration can be expressed as an integer v:

v IS:{I* 2|+1 (1)
where: i istherelative position of the cell in the neighborhood
(left=-1,current position =0, right=1), and j; isthe binary value
of the state of cell i. Each transition rule can therefore be
expressed asasingle integerr:

8
r=ajy*2v (2)
v=1
where |, is the binary state value for the cell at the next time
step if the current configuration isv. Thisisthe most widely
studied type of CA. It is a very simple many-to-one mapping
for each individual cell. The aggregated behaviors can be quite
complex [11]. Wolfram [27] has created four qualitative
complexity classesof CA’s:

- Stable - Evolving into a homogeneous state.

- Repetitive - Evolving into a set of stable or periodic
structures.

- Chaotic - Evolving into a chaotic pattern.

- Interesting - Evolving into complex localized structures.

Two further results show the computational abilities of
the CA. Simple CA’s can be constructed that reproduce
themselves. Thiswas one of theinitial concepts von Neumann
had in mind when he originated the CA mode [11]. CA
networks of sufficient size are capable of simulating general
computations [17]. Networks containing interactions of
extremely simple automata are therefore capabl e of producing
arbitrarily complex aggregated system behavior.

Thisisrelated to the ability of neural networksto produce
complex behaviors through network interactions among
simple threshold devices. Feed-forward and competition
networks can infer complex piecewise linear classification
functions from a set of examples[10, 22]. These abstractions
support the concept that intelligence is a property of

aggregated system interactions, rather than individua
components. It is worth noting that most connectionist
approachesrely on randomly choosing initial conditionsinthe
network.

3. INSECT BEHAVIORS

Artificial life researchers seek new approaches to
intelligence, coordination, and self-organization among
distributed autonomous systems in insect colony behaviors
[24, 21]. Self-organization isvery important in living systems.
The basic ingredients of self-organization are [3]:

Positive feedback - includes recruitment and

reinforcement of behaviors.

Negative feedback - counterbalances positive feedback to

stabilize the system.

Amplification of fluctuations - randomness and

fluctuations are crucial to system adaptation.

Multiple interactions- simple behaviorsat the micro level

aggregate into intelligent adaptations at the macro level.
In addition, arthropods have a number of broadcast signals
such asaarms[25]. These primitives are biologically inspired
and the basis of many complex anima behaviors such as
swarming, flocking, etc.

Insect colonies use pheromones to provide positive and
negative feedback signals with these characteristics [14].
Pheromones are natural chemicals secreted by individual
animals, and received by other individuals using the sense of
smell. They influence the behavior and development of the
receivers. Pheromone interactions have been used to model
food collection, nest building, task allocation, and war in
insect societies [3]. Computer simulations based on these
explanations have produced colony behaviors similar to those
found in nature[5].

Stigmergy is indirect communication between one or
more agents through the environment using pheromone
interactions [16]. Anindividua interacts with its environment
depositing pheromones. The specific pheromone |eft depends
on the task being performed by the individual. Pheromones
degrade and diffuse over time. They also aggregate as shown
in figure 1. Inthis way, multiple interactions can be combined
automatically to provide a single information source
describing the aggregate state of the environment. Stigmergy
expresses the synergy that occurs when multiple agentsforma
feedback loop with their environment.

The presence of pheromonesin the environment provides
dynamic information that regulates individua behaviors.
Individual actions aggregate into macro-behaviors and
pheromone signals aggregate into macro-information. In this
way an agent modifies its environment, and the environment
adapts to the needs of the agent.

The best-known example of this is foraging for food by
ant colonies. Dorigo has expanded the basic concept into a
genera optimization methodology [12]. Each ant in a colony
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performs two basic behaviors, regulated by two basic
pheromones:

Look for food — wander in a stochastic manner
depositing a “searching for food” pheromone. If the “found
food” pheromone is detected, the stochastic movement is
weighted to favor movement towards the “found food”
pheromone.

Bring food to the nest —when food islocated, the ant
picks it up. As long as the ant carries food it deposits the
“found food” pheromone. It moves in a stochastic manner
weighted towards the direction with the strongest “searching
for food” pheromone signal.

In [12] and [5] this behavior is andlyzed in detail. By
heading towards the strongest concentrations of the
pheromones, ants tend to follow the direct path. By allowing
stochastic deviations, premature convergence to sub-optimal
solutions is averted. By aggregating behaviors of many
individuals, the system achieves alarge degree of robustness.

Note that random decisions play a large role in this
behavior. This resembles the use of random initial conditions
in neura networks. Many other meta-heuristic approaches,
such as genetic algorithms and simulated annealing [7], rely
on stochastic, non-deterministic choices to find good quality
results.

4. SYNTHETIC ECOSYSTEMS

Self-organizing systems are characterized in Bonabeau [3] by:
- Credtion of spatio-tempora structures in initialy
homogeneous media.

- Co-existence of many possible and reasonabl e solutions.
- The existence of bifurcations; common in non-linear
systems|[2].

Self-organizing systems of this type have severa
appealing aspects, such as robustness and conservation of
resources. The existence of multiple possible solutions means
that if one solution becomes untenable another can be found.
Basing behavior on local decisions using purely local
information reduces latency and bandwidth consumption. For
these reasons a number of artificial systems have been
designed using these principles.

Synthetic stigmergy has been applied to distributed route
planning [5], military command and control [23], factory
workflow design [9], and telecommunications networks [4]. It
provides a convenient formalism for expressing dynamic
interactions of multiple agents.

All of these approaches construct a synthetic environment
for cooperating agents. Agents change the environment,
adding information to it in the form of pheromones. Specific
attributes of the pheromone such as speed of dissipation,
diffusion rate, and meaning are specific to the individual
application. Multiple simple agents then use the information
aggregated by the environment to steer their partialy
stochastic behaviors. Note the similarity between this
approach and the CA formalism. Macroscopic interactions
between simple individual components provide complex
adaptive behaviors.

5. AUTONOMOUS SENSOR NETWORKS

One application of this approach is in sensor networks.
Distributed sensor networks use multiple autonomous sensor
nodes to provide a sensing system with greater precision and
dependability than any component sensor nodes [7]. When
multiple sensor nodes survey the same region, redundancy
reduces system sensitivity to single points of failure. At any
point in time, a single sensor provides a single data point.



Collaborative signal processing aggregates data points into a
more reliable global estimate with dependability estimates.
This is similar to using multiple experiments to statistically
determine a parameter value and its variance [20]. A number
of military and commercial applications exist for this
technology [6, 13].

Sensor nodes do local processing and relay information
among themselves. They self-organize into a coherent whole,
forming an ad hoc multi-hop network. Data is relayed from
one node to another. Routing choices can be made
dynamicaly using sdlf-organization primitives such as
pheromones. Master nodes determine a frequency-hopping
schedule that slave nodes follow. Data can be forwarded from
one cluster of nodesto the next, until agateway to the Internet
is reached, at which point, a number of user workstations can
access the information simultaneously.

Sensor networks have a number of unique aspects.
Manual deployment and placement of a large network of
sensors would be time consuming and expensive. |dedly the
nodes could be deployed automatically. When the number of
nodes increases beyond a trivial number, manua network
organization becomes problematic aswell. Figure2 illustrates
many of the factors that influence network organization and
deployment.

When there are a large number of nodes, manual task
distribution becomes onerous and time consuming. If conflicts
exist in the needs of different user communities the process
becomes even more challenging. All of these reasons point to

0.7

P~ Sensor position
re —Sensor position range
06 | |r. —Sensor communication
range
s — Variance of sensor position
0.5 in stochastic grid

0.4

0.3

0.2

/ \re
\
0
P

the fact that the networks must be capabl e of self-organization
and autonomous tasking.

Nodes have a finite lifetime, which is shortened by
computation, sensing, data transmission, and data reception
because they are battery-powered. Most distributed
dependability theories are irrelevant to these networks [15].
Distributed dependability verifiesthe properties of safety (lack
of undesirable eventsin the network) and liveness (a networks
eventua return to a long-term steady state). Since batteries
will eventually be exhausted, the network will eventualy fail.
The property of liveness is impossible to attain. Instead, the
system must strive for adaptability. It should reconfigure and
tolerate multiple faults. Routing algorithms should avoid
creating “hot-spots’ that frequently relay data through the
multi-hop network, since they will fail much more quickly
than the rest of the network. Traffic to relay system
housekeeping information should be kept to an absolute
minimum.

Traffic patterns for sensor networks differ from those in
more traditional ad hoc mobile communications networks,
such as cell-phones. In traditional ad hoc networks,
communications are desired between two specific nodes
(customers). The network routing protocol needs to find the
node no matter where it is located in the network. Sensor
networks have the opposite task. Information is required about
a specific location. The node identity is irrelevant. For this
reason, routing is data-centric.

Figure 2. When networks are manually or autonomously deployed and configured, a number of factors need
to be considered. These include sensor ranger s and communications ranger .. In the current implementation
rs>r.. Inaddition to this the nodes position is generally known from GPS units and have an associated

uncertainty
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In cell-phone networks, communications occur between
nodes in the network for a conversation of unknown length.
Conversation length is often modeled as an exponentia
distribution. A reasonable goal is to find a path through the
network, which asymptotically approaches the least cost path
over time. In sensor networks, queries tend to be punctual.
They are either to inform the user of the current state, or
inform the user quickly when a given event occurs. It will not
be unusua for a single packet to be sufficient. Asymptotic
optimality isirrelevant. Transient effects that can be ignored
in other systems become much more important. Figure 3
illustrates an example of the transient effects modeled for a
simple network.

The Reactive Sensor Network project at the Pennsylvania
State University Applied Research Laboratory implements a

e o) i
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mobile code infrastructure that augments sensor network
adaptability [8]. This approach is inspired by the active
network paradigm [26].

This approach helps in implementing a self-tasking
network. Specific node work assignments need not be known
in advance. The software can be reconfigured and modified as
needs arise. Similarly if the battery fails on anode performing
an essential task, another node can download the software
needed to replace it. Figure 4 provides a view of how the
individual nodes interact to form a single multicomputer.
Noticethat it is amacroscopic multicomputer aggregating the
behaviors of its autonomous components.

Pheromone based control is aso possible. One candidate
pheromone is remaining battery power. Another candidate
pheromone is distance to an Internet gateway. Combining the

)
)]

Figure 4. The network is alarge computing system formed of individual nodes and sensing devices. Task

distribution is determined based on current workloads.



two pheromones provides a self-organizing sensor data
network synthetic eco-system that avoidsthe creation of “ hot-
spots.” This extends the useful lifetime of the network. The
CA formalism is useful in exploring a distributed system like
autonomous sensor networks (figure 4). Behaviors of
individuad nodes can be simple and guided by loca
information. What is important is that the entire system
devel ops complex adaptive behavior from interactions among
the nodes.

6. CONCLUSION

Unfortunately, most intelligence metrics are inherently
subjective. They often trandate into the Supreme Court’s
metric for pornography: “I know it when | see it.” Equally
unfortunately, most of us recognize intelligence mainly when
looking in the mirror. An example of this type of subjective
and narcissistic metric is the Turing test. For the concept of
intelligence to be useful, it needs an objective metric.

Can a purely deterministic system be considered
intelligent? If this is the case, arithmetic equations and
statements of fact are legitimate candidates for intelligence.
To the contrary, intelligence is beyond rote memorization and
execution of explicit recipes. Intelligence has a creative
aspect. An intelligent entity must provide unexpected,
creative, appropriate, results. Thisimplies a nondeterministic,
random, or stochastic component. Distributed networks of
simple interacting automata are robust examples and are
capable of performing general computations[27].

Two existing qualitative hierarchies provide objective
metrics of intelligence:

- Chomsky’s language hierarchy: (1) regular grammars
recognized by finite state automata, (2) context free
grammars recognized by push-down automata, (3) context
sensitive languages recognized by linear bounded
automata, and (4) recursively enumerabl e sets recognized
by Turing machines[18].

Wolfram’s complexity classes of CA’s: (1) stable, (2)

repetitive, (3) chaotic, and (4) interesting.

To measure the 1Q of intelligent systems another qualitative

scale is needed that measures systems interactions with their

environment:

Nonadaptive — most systems

Adaptive — can regulate parameters to fit environmental

conditions. Most controllers would be in this class.

Self-Organizing — adapt to their environment and

autonomously reorganize as required. [12] and [8] are

examples of thisclass.

Full stigmergy — modify the environment to suit their

goals. Nest building termites, wasps, and humans are in

this category.

Discussing intelligent systems presupposes that
intelligenceis not a purely human attribute. It isan attribute in
both living and artificial systems. For that reason, it is
appropriate to use concepts from biologica studies of non-

human intelligence. In simulations of insect societies and
construction of artificial systems, stigmergy has been the key
to designing robust, creative, emergent behaviors. An
appropriate metric for comparing intelligence should be based
on the system’s stigmergy, stigmergy being the system’'s
ability to interact with and modify its environment to advance
the system’ s goals.
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ABSTRACT simpler to more complex forms. Complex intelligence thus
containts and requires antecedent simpler intelligence. On the
We are studying the problem of connecting intelligence to performancéther hand, intelligence has no absolute value, but depends on
in the context of autonomous agents with very limited capabilitiesand is the result of dynamic interaction with a changing world.
where performance is suspected to include very few parameters and Beom an evaluation point of view, intelligence is not a well-
easier to quantify than in more complex cases. We are reviewing andefined nor a well-specified property, but it depends on an
comparing three behavioral models that solve three typical autonomoyshserver's point of view, or as Brooks [5] says “intelligence is in
agent problems, the explorer robot [1][2], the food-collector ant [3] anqe ve of the observer”. An agent demonstrating intelligence
the cooperative tit-for-tat agent [4]. In all three cases and despite t rough dvnamic interaction with a chanain orld has to be
apparent differences between them, we have defined a single problem- ug . y I_ : . lon wi 9 _g W
dependent performance measure and, on that basis, we have found tﬁeﬁpon_s've to its env'ronmen_t and adaptive to a range of
the most intelligent among several alternative models, i.e., the one thiiPredicted events and situations. For the sake of enhanced
to the eyes of an observer achieves better performance, is a seftability, adaptivity methods should better be constructed or
regulatory model involving a two-level regulatory process and an‘controlled” by the agent itself. On the other hand, we, as
internal variable representing the state of the problem-solving procesdesigners of autonomous agents, are seeking universal design
thus self-assessing recent performance. The power of the agent lies|§s that will make our job easier in the long term. To this end,
the second level and regulation mechanism, that is problem-dependepje gre investigating a number of classical autonomous agents

and that has been shown to achieve the highest performance amcl)gpoblems in an attempt to identify common design solutions, that
many alternative models in all three problems. The whole design th desi uti that sh desi inciol '
allows the agent to assess its actual performance and correct g design solutions that share design principies.

behavior by modifying accordingly the first-level regulation rates, or In what follows, we are reviewing and comparing three
equivalently by adapting the first level regulation law. From abehavioral models that solve three typical autonomous agent

symmetrical point of view, the agent may also be thought of agproblems, the explorer robot [1][2], the food-collector ant [3]
predicting the future state of the environment and adapting accordinghand the cooperative tit-for-tat agent [4]. In all three cases and
The self-regulatory process appears therefore as both the means despite the apparent differences between them, we have defined
effective p_erfor'mance assessment and the low-level prerequisite tg single problem-dependent performance measure and, on that
enhanced intelligence. basis, we have found that the most intelligent among several
alternative models, i.e., the one that to the eyes of an observer
achieves better performance, is a self-regulatory model
1. INTRODUCTION : involving two regulatory processes and an internal variable
FUNDAMENTAL CONCEPTS representing the state of the problem-solving process, thus self-
assessing recent performance.
We are studying the problem of connecting intelligence to  The crucial internal agent variable has to be regulated
performance in the context of autonomous agents with verwithin bounds. The goal of the agent is to either bring it to a
limited capabilities, where performance is suspected to includémit (say 0) or prevent it from reaching the extremes. This
very few parameters and be easier to quantify than in mordesign step depends on the definition of a quantitative
complex cases. By definition, the bottom-up study ofenvironment or problem state, that will be next used as a metric
intelligence relies on two axioms, evolution and interaction. Thdo evaluate different design alternatives.
axiom of evolution states that higher forms of intelligence Regulation occurs using positive feedback, so that the
appear as a result of an evolutionary process that proceeds fragent's variable follows the tendency of the external world that it



tries to represent, although the value of the variable almost neveuch as those encountered in the literature (for instance [8]) that
coincides with the truth, but rather it maintains a representationalomprises a random component and even without spatial
distance from it. At a second or meta level, another regulationeasoning or learning, statistically ensures the coverage of the
process takes place that regulates the rates of the first level usiimgerest field and the exhaustion of the mineral sources.
negative feedback. The power of the agent lies precisely in the However, from a more “cognitive” point of view, this
second level and regulation mechanism, that is problemfunctionality alone does not respond to the crucial question :
dependent, and that has been shown to achieve the highéstow do the agents know that they have swept the whole area,
performance among many alternative models (including the oner that they have accomplished their missioh Pn order to
without meta-regulation) in all three problems. answer to that question, we have to reformulate the description
The whole design thus allows the agent to assess its actuafl the sweeping task, in a way so as to include an expression,
performance and correct its behavior by modifying accordinglyanalytical or other, that represents the termination criterion, that
the first-level regulation rates, or equivalently by adapting thds the exhaustion of the mineral sources. To this end, it is
first level regulation law. From a symmetrical point of view, the sufficient to define an environmental variable, the density of
agent may also be thought of as predicting the future state of thmineral sources, which characterizes the state of the explored
environment and adapting accordingly, because conceptually tterea at any moment. In what follows, this density will be
negative regulation law is the following: denoted asp,. The explorer-sweeper agent's goal becomes

If (the world diverges from the agent's therefore to bring the value of that variable to 0. We will see that
representation of it)

. an agent having a representation of that variable constitutes a
then (in the future) adapt so as to get . . . L
closer to the world, simple solution to this description problem.
else (in the future) adapt so as to amplify Lastly, we seek an agent model that would “optimize”
differences from the world. performance, i.e. that would allow an agent to accomplish its

As a conclusion, the three case studies show that when anission as fast as possible.

autonomous agent problem may be formulated as a regulation |n our simulations, the world under exploration is defined
problem, the most intelligent alternative model, i.e. the oneas a square around the central base : the size of the world is
achieving highest performance, is one that continuously assessggrefore the length of the square’s edge (the results reported
its own performance and regulates its internal parametersave been obtained in a 25x25 world). The agent’s basic control
accordingly. Therefore, in these cases intelligence appears as tgstem, as well as the simulation details, is given in [1][2]. We
result of low level self-evaluation and regulation. are analyzing next the single agent case, whereas the multiple

agents case is studied in [1][2].

2. CASE STUDY | : EXPLORER AGENTS 2.2.The Solution : Reformulation of the Problem

2.1.The Problem We come now to the second question : “How does the agent
know it has swept the whole area in order to return to the

A typical problem encountered in the behavior-based robotic82se ?”. It needs a way to detect the degree of task completion
literature is that oéxploration: a set of agents (robots) lands on ©F €lS€ a termination criterion (sweeping completed). The only
a planet with the mission to explore its surface for samples dparameter of the task that can be useful to the development of a
minerals having certain properties. The robots arrive in dermination criterion is the source density in the wasig). If
spaceship that serves as the planetary base in the course of tig @gent knew in advance its initial vapug0), we could define
mission. The mission is accomplished when the whole surfac@S termination criterion a formula such §s,(0) * sqr(n)
contained within a certain distance from the base is explored@mples have been collectddherer is the size of the square’s
i.e., when the agents have “swept” the whole area and exhaust8d9€, here 25). However, this criterion is not robust because if a
the sources of interest (cf. for instance [6][7]). The agents aré2MPle is not detected, the agent will never terminate (on the
supposed to return to their base once their mission igther hand, we could certainly allow ourselves to miss a couple
accomplished. of samples).

The exploration problem has been traditionally tackled A Simple solution to this problem is to estimate
from a “functional” point of view : “How does one or more continuously the value gi,(t) and, given that it falls to O as a

agents sweep a delimited area to exhaust the sources gifle effect of the agent’s activity, take as a termination criterion
interest ?”. The answer to this question is a control system, d(0)=0. Estimation of the value ofy(t) involves then a

architecture, that allows an agent to navigate, perceive, detetgPresentational variable which is local to the agpg(t)f and
minerals etc., in order to sweep the area in question. A solution



may be done through a simple formula ofogwrtional
adaptation :
Representational variable : p a(t)
Proportional adaptation (window w, rater) :
pa(t) =p  a(t-w) +diff *r
diff =p  comp-p a(t-w)
Pcomp = number of picked samples / number of
moves (during the adaptation window)
Termination criterion :
pa() <e p
where e , is a small threshold (here,
ep=0.001)
The peomp is the agent’s estimate pf, as computed during the

adaptation window and the proportional law ensures that the

estimate’s update does not take place too quickly. This

representation/adaptation system shows the advantage of
robustness in front of perturbations/manipulations such as

reinitialization ofp,(t) during sweeping. Figure 1 illustrates the
coevolution of the two variablgg(t) andp,(t). As is shown in
the figure,the representational variable allows the agent to
always solve its termination problem without ever taking the
real value of the variable it represenfexcept a crossing point).
Both variables fall progressively to 0 without ever taking the
same value — we could say thgft) “follows” py(t). Actually,

picking of the last sample and the definitive return of the agent
to the base is very variable. It seems therefore that to ensure the
agent's operationality in different worlds, we need to find a
means to combine the operational
adaptation with the advantages of slow adaptation as far as curve
regularity is concerned.

advantages of quick
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Figure 1. Performance of the agent for different
parameter settings in a medium initial world density,
pw(0)=0.5 (,(0)=0.15), 1=1437, $=3278, {=6821.

First part (quick adaptation)n=15,r=0.3, d{=1437.
Second part (medium adaptationw=30, r=0.2,
dt,=1841.

Third part (slow adaptation) : w=45, r=0.1;%R8543.

the rapid rise opa(t) in the beginning of the sweeping phase isMore precisely, we need a quick adaptation near the end (to
due to the presence of a sensor of distant samples that makes té@ninate quickly), but a slow adaptation during picking (to

agent head toward the mineral sources minimizing its erratiavoid fluctuations). We have then to find a way to stabilize to
behavior in a way that most of the visited places containthe right parameter settirgn-line Otherwise statedye need a

samples. The value gk(t) falls then because the value mft)

and less samples.

meta-adaptation system
decreases as a side-effect of the agent’s activity who finds less

Meta-adaptation has to affect theandr parameters in a

way that adaptation becomes quicker wipgy is sufficiently

close top,(t) and slower when it is far from it. This meta-

2.3.0n Efficiency : Meta-Regulation

adaptation law translates the fact that the world is more reliable

when it is not much different from the agent’s idea about it,
Next, we proceeded to study the relation between the adaptati@therwise it should not be taken too seriously.

system’sw andr parameters and the initial world valpg0).

The system has been simulated for several valuesasfdr in

several initial world densities. The simulation results for three

sets of adaptation parameters (quick, medium or slow

adaptation) in a medium initial world density are given in fig. 1.
The quick adaptation is more operational than the medium

one, which is in turn more operational than the slow one (always

according to the task duration criterion). However, the quicker

Meta-adaptation :
If [difff (= [p compP a(t-w))
then quicker adaptation

r —r maxy w —> Wm/n
(r=r+r r ¥ maxt), WE=WHT
otherwise slower adaptation

r —=r min, W —Wmnax
(I’:f+l’ r*(r m/n'r), wW=w-+r W*(W max'W))

Figure 2 gives the results of applying the meta-adaptation

Sfp,

w * (W min 'W))

the adaptation, more fluctuations it shows, and the slower thgystem in three initial world densities ; as is shown in the figure,
adaptation, more delays it shows. Furthermore, the samife agent’s response (the shape of the curve) is the same for all
parameter setting gives different results in different worldthree exemplary densities, or else the residue of mission duration
densities : the difference in the results is reflected on the shapdter picking the last sample is approximately the same in all

of the curves (for more curves, refer to [1][2]).

particularly, the agent’s response to different perturbations (the

More three cases.

We have shown in [1][2] that the operationality of the agent

shape of the curve qi,(t)) differs according to the boundary with the meta-regulation law does not depend qualitatively on
condition ,(0)) : for the same parameter setting, the agenthe values Ofwpin, Wmax Fmin, Fmax w @ndr.. Furthermore, the
finishes its task more or less quickly according to the value ofnitial condition ©,(0)) plays no role either.

pw(0), that is the duration of the interval between the moment of
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(*) In the Docker robot, the condition
(crumb or stimulus sensed) is replaced

Lo N, - by (crumb or stimulus or loaded robot
ney J iy ST sensed).
pa | ’ u’ﬁrh H\,‘_ Wﬁl The Tom Thumb robot lays down two crumbs while homing,
- S and picks up one crumb while following crumbs or stimuli.
LI ~, . . . -
" . 5, P Unless otherwise stated, all simulations reported below use a
" B v - — T 30x30 grid world with a large source at one of the corners and a
o ol 15 L wan el population of 10 robots starting with 50 crumbs each. Robots

. e may sense a sample or crumb from a distance of up to 3 grid
Figure 2. Performance of the agent with a meta- 5.

adaptation system for three initial world densities, low We have simulated the behavior of the s ;

_ . - . B ystem as is, by
(pW(O):O.l), med_lum MO):O'l) and _h|gh MO)_—O.Q) measuring the quantities of crumbs deposited in the world or
(p_a(O)—O.lé). d1—892, d5‘16_63’ d5‘3211 (1_‘897' owned by individual agents. As was expected, the quantities of
=2560, §=4771). ,=0.1, Wini=15, Winai=40, Iir=0.15, crumbs owned by robots generally fall below zero, while the

Mma=0.3,1=1,=0.2) quantity of crumbs deposited in the world may rise without limit.

The exact values of these quantities depend on the problem
parameters (distance from source to home base, number of
robots and source size) that define the expected number of robot
trips source-base necessary to complete the task.

3. CASE STUDY Il : TRAIL-MAKING ANTS

3.1.The Problem

In another variant of the previous problem ([8][9][10]) there are3.2.The Solution : Reformulation of the Problem
a few large sources distributed in the world. The solution in this
case consists in allowing a robot to lay down trails or “crumbs”An apparent question arising at this point is, “what if we just
while carrying a source sample to the home base, that anotheenstrain robot behavior so as not to lay down crumbs when it
robot or itself may follow to arrive to the source quickly. A does not have any ? aren’t crumbs deposited so far enough ?”
different version of the problem considers that trails laid downWe have been able to see in several experiments that, first,
by the robots evaporate slowly, in the same way as pheromortepending on the problem parameters, the total quantity of
guantities laid down by real ants in the physical world ([11]).  crumbs might not be sufficient, in which case the path to the
The first complete solution has been given in [10], where source will be disconnected, and, second, when it is sufficient —
number of increasingly complex and increasingly satisfactoryfor instance if we start the above experiment with 1000 crumbs
solutions have been analyzed. The Tom Thumb robot is able feer agent — the total number of crumbs deposited in the world
successfully build, reinforce and correctly use trails from themnay rise tremendously. This last condition generates an
home base to the source, while the Docker robot [10] uses d@mportant problem : the robots will continue being attracted for a
additional mechanism of sample “theft” from neighbors, whichlong time to an empty source, that is, the surplus crumbs will be
allows robots to build chains resembling harbor Dockers. Thenisleading. This observation brings us to the actual formulation
motivation for our work has been our feeling that the Tomof the above trailing problem :
Thumb robot as defined is not stable because it assumes We are seeking a laydown-pickup mechanism such that a
unbounded numbers of “crumbs”, which is not physicallytrail to a source is built quickly and reinforced while the
possible, and which would show in a real roboticsource exists and vanishes shortly after the source is
implementation. A detailed presentation of what follows may beexhausted.

found in [3].

The problem of agent crumb exhaustion lends itself to a

The Tom Thumb robot's behavioral diagram as describedimple solution. Every time a robot needs to lay down or pick up

in [10] is as follows :
If (carrying samples)
If (back home) lay down samples
Else {go home, lay down 2 crumbs}
Else
If (found samples) pick up samples
Else
If (crumb or stimulus sensed) (*)
{follow stimulus, pick up 1 crumb}
Else move randomly

crumbs, it should do it in a way so as to preserve its own
quantity of crumbs within some desired boumdsmbs,, and
crumbs$,a, by using the following laws :

For laydown crumbs(t+1) = crumbs(t) +
ry *(crumbs  min — crumbs(t))
For pickup crumbs(t+1) = crumbs(t) +

rp*(crumbs  max— crumbs(t))
This simple regulation mechanism ensures that no agent will
ever run out of crumbs completely. However, the absolute (real-



valued) quantity of crumbs deposited or collected at each cycland falls back quickly to zero when the source is exhausted,
will depend on the state of the agent: an agent with manwhile showing far less fluctuations than in the previous case),
crumbs will lay down more and pick up less than an agent witlbut it improves results quantitatively as well : in all runs,
just a few crumbs remaining. This arrangement allows for trail$ncluding the one depicted, the duration of the task has been
to be built rapidly (because agents in the beginning tend to laghorter than with the non-regulated model.

down large quantities of crumbs) and to vanish quickly (because
agents toward the end of the task have statistically only a few
crumbs, so they tend to pick up large quantities of crumbs). In 1
what follows it will be assumed thatrumbs,,=10 and 1
crumbs,.x= 100, for all agents. .

3.3.0n efficiency : Meta-Regulation 0 . . . T T

i} 160 az0 440 Gl 200
A large laydown rate will be beneficial in the start and middle of
the task, when the agents would like to build and reinforce a trail Figure 3. Quantity of crumbs owned by a meta-
quickly, while a large pickup rate would be beneficial toward the regulated agent in a typical run. It fluctuats between
end of the task, when the agents would like to destroy the trail to ¢ upper and lower limits.
the exhausted source as quickly as possible. While a given
parameter setting would be more desirable than another one in a

particular context, our goal as designers should be to ensure the CASE STUDY IlI :

better behaviorglobally, i.e., to ensure that the system will ADAPTIVE TIT FOR TAT AGENTS
“discover” or identify the proper parameter setting in each

situation. 4.1.The Problem

Consequently, what we really want mot a particular

parameter setting, but a mechanism that will allow a robot to laA major issue on the intersection of artificial life and theoretical
down more and pick up less crumbs at the beginning of the tasiology is cooperative behavior between selfish agents. The
(so as to build and reinforce the path) and vice versa toward thepoperation problem states that each agent has a strong personal
end (so as to destroy it quickly). To this end, a measure of th@centive to defect, while the joint best behavior would be to
state of the task must be available. The only such measure that@operate. This problem is traditionally modeled as a special
robot may have is the number of the crumbs in the worldtwo-party game, the Iterated Prisoner’s Dilemma (IPD).
However, since this quantity cannot be directly perceivable, we At each cycle of a long interaction process, the agents play
have used an estimate of it, simply the number of crumbs at thde Prisoner’'s Dilemma. Each of the two may either cooperate
current position of the robot. This estimate is used as follows : (C) or defect (D) and is assigned a payoff defined by the

For laydown following table.

If crumbs(t) >= world_crumbs_estimate
P =r O+ 1 *( me =T 1(0) Agent | Oppgnent) _Payol
elser ((t+1)=r O +r 5 *( min =1 (1) (= Reward)
For pickup C D 0 (= Sucker) _
If crumbs(t) >= world_crumbs_estimate D C 5 (= Temptation)
re(t+l) =r M +r *gr pmin =T p(t)) D D 1 (= Punishment)
elser p(ttD)=r —p@*r i *(r pmax—r p(t) Usual experiments with IPD strategies are either tournaments or

increases when the robot owns more crumbs than may be fourgl ainst all others and scores are summed in the end. In

in its ﬁurrent pos_itilgn and decreasei oth?]rwise.b Inversely,l th@cological experiments, populations of IPD strategies play in
rate of crumb picking Increases when t e ot owns les, naments and successive generations retain the best strategies
crumbs than may be found in its current position and decreasgﬁ proportions analogous to their score sums.

otherwise. The first notable behavior for the IPD designed and studied

Figure 3 gives a typical result of the application of theby Axelrod [12] is the Tit For Tat behavior (TFT, in short) :
above model. Surprisingly enough, the self-regulation of the Start by cooperating

laydown and pickup rates not just does change the qualitative From there on return the opponent's previous move.
behavior of the agents (the quantity of crumbs in the world rises
quickly to a fairly high value, stays close to it during the task,

As is obvious from the formulae, the rate of crumb Iayinge(gological experiments. In tournaments, each strategy plays



This behavior has achieved the highest scores in earlgetween C and D. To this end, it should have an estimate of the
tournaments and has been found to be fairly stable in ecologicapponent’s behavior, whether cooperative or defecting, and

settings.

react to
The best designed behavior found so far in the literature isontinuously updated throughout the

The estimate will be
interaction with the

it in a tit-for-tat manner.

GRADUAL [13] which manages to achieve the highest score®pponent. The above may be modeled with the aid of a
against virtually all other designed behaviors. This behaviocontinuous variable, the world’s image, ranging from 0O (total
starts by cooperating and then plays Tit For Tat, except that defection) to 1 (total cooperation). Intermediate values will
does not defect just once to an opponent’s defection. Instead, reépresent degrees of cooperation and defection. The adaptive tit-
responds by playing blindly (nxD)CC, where n is the opponent’'dor-tat model can then be formulated as a simple linear model :

number of past defections. That is, GRADUAL responds with

Adaptive tit-for-tat

DCC to the first opponent’s defection, DDCC to the second, etc. jf (opponent played C in the last cycle)
The justification given for the performance of this behavior is

that it punishes the opponent more and more, as necessary, andgorld =

then calms him down with two successive cooperations.

behavior comparable to GRADUAL could be found, that has not

The motivation for our work has been our conviction that a

permanent, irreversible memory. Instead, we are after a more

adaptive tit-for-tat based model

then
world + r*(1-world), r is the

adaptation rate

else

world = world + r*(0-world)

If (world >= 0.5) play C, else play D

that would demonstratelhe usual tit-for-tat model corresponds to the case of r=1

behavioral gradualness and possess the potential for stability {(finmediate convergence to the opponent’s current move).

front of changing worlds (opponent replacement etc.).

Clearly, the use of fairly small r's will allow more gradual

Before proceeding, let us examine the high scores thdtehavior and will tend to be more robust to perturbations.
GRADUAL obtains against other behaviors. Designed behaviors

found in the literature usually fall in one of three categories :

Behaviors that use feedback from the game, usually
cooperative behaviors unless the opponent defects, in which
case they use a retaliating policy (tft, grim, gradual, etc.).
Behaviors that are essentially cooperative and retaliating®
but start suspiciously by playing a few times D in the
beginning, so as to probe their opponent’s behavior and
decide on what they have to do next. For example,
suspicious tft (STFT) and the “prober” behavior of [13]. .
Behaviors that are clearly irrational, because they don't use
any feedback from the game. For example, the random
behavior and all blind periodic behaviors such as CCD,
DDC etc.

A behavior will maximize its score, if it is able to converge to
cooperation with all behaviors of the first two categories and
converge to defection against behaviors of the third category.
Steady defection against periodic behaviors is necessary in order
to achieve the highest possible score (see [4], for details).

The GRADUAL behavior fulfills both of the above

specifications, because it responds with two consecutive C's
after a series of defections, giving the chance to STFT or prober
behaviors to revert to cooperation, and converges to ALLD
against irrational behaviors. A solution to the permanent
memory problem has to demonstrate the same property.

4.2 . The solution : Reformulation of the Problem

Now, let us simulate the behavior of the adaptive tit-for-tat

agent against all three types of behaviors described earlier.

For initially cooperative behaviors with feedback and a
retaliation policy, the model cooperates steadily and
converges quickly to total cooperation.

For suspicious or prober behaviors, the model plays exactly
like tit-for-tat, while the value of the world variable
oscillates around the critical value of 0.5 (see figure 4
against suspicious tft).

For periodic behaviors, the value of the world variable
converges quickly to oscillations around the characteristic

value of “number_of _C’'s/number_of D's” in the
opponent’s period.
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Figure 4. Interaction of adaptive tit-for-tat with
suspicious tit-for-tat (r=0.2, world(0)=0.5).

4.3.0n Efficiency : Meta-Regulation

The adaptive behavior that we are seeking should be essentialycan be seen that the previous version of the model suffers from
tit-for-tat. Moreover, it should demonstrate fewer oscillationsmanipulation of the world variable by the opponent. This shows



as stabilization of the agent to an oscillatory behavior (as is thEor example, figure 5 gives the behavior of the meta-regulated
case against stft) or a steady cooperative behavior againatiaptive tit-for-tat agent against STFT.
irrational agents (as is the case against CCD). To bypass this Finally, the adaptive agent manages to differentiate
problem, we exploited our observation that different rates fobetween a retaliating agent and an irrational one that has initially
cooperation and defection. @nd g, respectively) yield different the same behavior. The agent first assumes that the opponent is
results. More specifically, we observed that the adaptive tit-forretaliating and becomes increasingly cooperative, but soon finds
tat agent manages to get opponents such as stft or the proberotat that the opponent is actually irrational and reverts to
cooperate if £rg, while it manages to fall to steady defection defection.
against periodic behaviors ifrg.

Thus, what we need at this point is a method for the
adaptive tit-for-tat agent to discover whether the opponent usesst DISCUSSION :
retaliating behavior or is just irrational and to adopt accordingly ELABORATING THE CONCEPTS
the proper rate setting. We have designed and examined several
such variants for estimating the opponent’s irrationality and w

. 4 8n all three case studies, we have shown that the agent's
have finally found the following rule :

behavior is based on a critical variable that drives its motivation

Throughout an observation window, record how to act. This variable is coupled with the environment through the

many times (n) the agents move has agent's behavior. By regulgting its own .variable, an agent trie§
coincided with the opponent's move. At to regulate the corresponding world variable. Furthermore, this
regular intervals (every ‘window” steps) variable hagognitive valugsince it represents the agent’s idea
adapt the rates as follows : about the state of the environment. Seen this way, the agent may
If (n>threshold) then

be thought of as trying to approach or approximate the world
variable, i.e., as trying to adapt to its environment. The regulated

Fre=r min, ' d=7rI max
else r ¢c=r maxt d=r min

The rule may be translated as : variables appear to be critical for an agent's survival or

If (the world is cooperative enough)* then operationality, and correspond to what Ashby [15] called
re=r min,r d=r max essential variables

else T /c/?hftrgax' I d=r min o ) The operationality of the behavior is ensured through an

ES) th;ecio-c.;/e fypgn%s/a}oieﬁgﬁgns Z}O‘/e additional self-regulation mechanism acting on the adaptation

cooperation ([14]) rates. This is an important observation, since it is compatible

with the dynamical approach to cognition [16], stating that the

Note that the agent drops its cooperation rate when the world [8OSt important factor in cognitive mechanisms is the nature of
assumed cooperative, and increases it otherwise, that is, it us{1a@mics involved. Mechanisms like the ones developed here

negative feedback at the rate regulation level. may bg a_llso regarded as a first step toward the realization of
autopoietic systems :
1 “... an autopoietic system is a homeostat ... the critical
| iarld variable isthe system’s own organizatior’ ([17], p. 66)

083
In sum, we have shown that self-assessment of performance by

068 an agent is done with the aid of a double regulatory process and

05 F it allows it to become more operational in its work. This is in

line with classical control theory, where regulatory mechanisms

033 are used as the basis of behavior [18]. Inversely, similar

048 regulatory processes may be designed for other problems,

o | | L | ! provided that the appropriate performance measure (or cognitive

0 5 0 15 20 28 30 variable) and its assessment model are given or may be

Figure 5. Interaction of the meta-regulated adaptive identified. In this sense, the long term perspective of this work is

tit-for-tat agent with suspicious tit-for-tat(®)=0.2, to build a regulation theory for reactive autonomous agents. To

r4(0)=0.2, Fa=0.3, Fin=0.1, world(0)=0.5, this end, a number of issues have to be investigated :

window=10, threshold=2). Compare with figure 4. ¢ How do we identify the critical cognitive variable in each

We have shown in simulations that the adaptive tit-for-tat ~ case ? Equivalently, how do we formulate regulation in each

agent with the meta-regulation mechanism converges to the case?
proper behavior against both retaliating and irrational agent®. How many first level rates are necessary ? Equivalently,
how many independent regulation processes are there ?
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Abstract

Intelligent behavior means doing the right thing
[1]. Due to the bounded rationality of agentsit is
not always possible to do the right thing. Hence
intelligence implies doing the best possible given
the resources an agent or a multi agent system
has. So, a measure of intelligence should reflect
an evaluation of the process by which the agent
or the multi agent systems arrive at exhibiting
intelligent behavior. In multi agent systems,
intelligent behavior is emergent in nature rather
than additive. So, measures of intelligence
should attempt to estimate the net resultant
behavior rather than the individua fine grained
reasoning processes of individual agents.
Intelligent quotient measures for the human mind
attempt to arrive at a single nhumber based on a
battery of tests. This number is areflection of the
individual’s standing in his or her group. In this
paper we attempt to present our ideas about
arriving a such measures for multi agent
systems.

1. Introduction

Intelligence is expected to allow an agent to
do the right thing. The level of intelligence
is reflected in the appropriateness of the
actions undertaken by an agent in the given
circumstances. Measures of intelligence
have been used in the human society for a
variety of purposes. These uses range from
efforts to identify deficiencies in individuas
and help them improve in these areas to
efforts to rank people according to their
capabilitiesin a given area.

Research in agents and multi agent systems
is maturing and systems are being deployed
in real world settings. Consequently, users

of these systems would like to evaluate the
system, understand its advantages and
deficiencies and improve upon the same.
Also if multiple intelligent systems purport
to accomplish identical or similar tasks, the
users of these systems will have a natural
interest in making a comparison of the
different systems. Similar needs in the
human society gave birth to different
performance measures. The measures are
usually referred using the generic term
Intelligence Quotient (IQ). These varied
measures are based on differing views of
intelligence. In Section 2, we briefly outline
the differing views of human intelligence,
and how these views lead to different
perspectives of 1Q measurements. In Section
3, we outline different multi agent
architectures and highlight various aspects
of these architectures that can be measured.
In Section 4, we outline a possible measure
for multi agent architecture developed for
problem solving activities in rea time
domains. Section 5 presents the conclusions.

2. Intelligence and its
Measurements in the Human
Society

Intelligence is an abstract concept and

reflects in some way the competencies and

skills an individual possess. Some of the

guestions about intelligence include [2]:

¢ Is mental competence a single ability
applicablein avariety of settings? or
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e |s competence produced by specialized
abilities, which a person may or may
not possess independently?

If we can resolve this question about
intelligence, the next question what are the
metrics by which you can measures these
competencies. Do these measures reflect in
the every day problem solving ability of the
individual? The answers to these questions
depend to a large extent on the perspective;
one subscribes to, about intelligence. Two
popular views about intelligence are

*  psychometric views and

»  Cognitive-psychology view.

The psychometric view of intelligence
places emphasis on scores obtained in
carefully designed tests to evaluate specific
skills. This view gives rise to the popular
notion of inteligence quotient. Severa
versions of intelligent quotients exist.
Usualy these numbers are arrived by
performing factor analysis on scores
achieved on tests about different skills.
Thus IQ measures reflect the level of what
psychologists call crystallized intelligence
(Ge). Crystallized intelligence is the ability
to apply previoudy acquired problem
solving methods to the current problem.
Measures of crystallized intelligence
correlate strongly with another aspect of
intelligence viz. fluid intelligence (Gf).
Fluid intelligence is the ability to develop
techniques for solving problems that are
new and unusual from the problem solver’s

perspective.

The cognitive-psychology view is that
thinking is a process of creating mental
representation of the current problem,
retrieving information that appear relevant
and manipulating the representation in
order to obtan an answer [2]. This
definition encapsulates the concepts of Gc
and Gf. Forming a mental representation of
the problem is akin to fluid intelligence and
extraction of relevant information is similar
to crystallized intelligence. A variety of
tests based on the cognitive-psychology
view of intelligence are also available.

3. Intelligence in Agents and Multi
Agent Systems

Agent architectures reflect the underlying
problem solving processes. Agents can be
broadly classified as either reactive or
deliberative. Reactive agents are usually
preprogrammed to respond in particular
ways to various stimuli  from the
environment. Agents with deliberative
architectures usually use some reasoning
process to arrive at a solution. Reflecting
upon the classification of intelligence
discussed in the earlier section, we can
assume that reactive agents depend on
crystallized intelligence while deliberative
agents depend on fluid intelligence. So,
psychometric  based measures are
appropriate for reactive architectures, while
tests that try and evaluate the reasoning
processes are appropriate for deliberative
agents. Just as 1Q tests target different
groups of the society, tests in the agent
world should aso target specific agent sets.
For example we might design a test suite
that tries to evaluate spidering skills of
Internet spider agents.

The power of multi agent systemsisin their
property of emergent behavior. Apart from
the domain knowledge, multi agent systems
possess some specia features, which make
them very attractive. These are

* communication and

e agent interaction

Agent interaction is achieved in a variety of
ways. Coordination is the generic agent
interaction mechanism that helps agentsin a
multi agent setting achieve their individual
and common goals. Coordination can be
achieved either through cooperative or
competitive mechanisms. Communication
protocols based on theories like speech acts
enable agents to exchange small by
semantically rich messages in aid of their
problem solving. In this perspective of
multi agent systems, the communication and



agent interaction aspects of the systems

seem to ermine the intelligence or

performance” of the system. Hence we

propose that any performance measure for

multi agent systems should in some way be

able to rank different systems along these

two dimensions. So, an 1Q measure for multi

agent systems is a function of three separate

factors. They are

e domain knowledge(DK)

» individua agent reasoning capabilities
(ARC)

e communication (COMM) ahilities and

» efficacy of agent interaction Al).

MIQ = f(DK,IARC, COMM, Al)

Since we are interested in evaluating multi
agent settings, we can ignore the factors that
can be attributed to individual agents viz.
DK and ARC. Thisimplies we are assuming
that al agents are equally capablein a given
domain. This assumption though not suitable
for rigorous measurements, could however
be a good starting point. Hence

MIQ = f(COMM, Al)

4. Measuring intelligence /
performance in TRACE

TRACE (Task and Resource Allocation in a
Computational Economy) is a system of
multi agent systems designed to operate
under time constraints and load variations
[3,4]. TRACE approach to problem solving
is based on an adaptive organizational
policy. The TRACE system is market based
multi agent system. Tasks and resources are
alocated to different multi agent systems
based on their problem solving load and the
price they are willing to pay for the
resources. We assume that knowledge can

! We assume that higher level of intelligence
resultsin better performance. Consequently, a
MAS which is better at a given set of tasks than
another MAS can be considered to be more
intelligent.

be transferred among agents and thus
domain knowledge plays no particular role
in the evaluation of the multi agent systems.

Intuitively, we know that the efficiency of a
player in a market is determined by how
efficiently the multi agent system trades its
funds for resources to aid in problem
solving activities. Different multi agents
systems in TRACE can adopt different
policies to decide on their problem solving
activities.

Now if we attempt to measure the
performance of multi agent systems with
different policies in the TRACE setting,
what are the attributes that can capture the
essence of the equations in the previous
section? Multi agent systems sign up or
commit for tasks and attempt to complete
them. In this process they undertake both
communication and agent interaction tasks.
These tasks are time bound and task
completion beyond a deadline is a wasted
problem solving activity. In order to
achieve maximum returns for the problem
solving activity, multi agent systems will
drop some tasks (decommit). The lower the
number of decommitments the better the
performance. The number of
decommitments reflects how much a given
system has overreached. It in turn reflects
on the shortcomings in its communication,
negotiation and problem solving abilities.
Thus in the case of the TRACE system we
feel that a normaized number of
decommitments is an accurate measure of
the performance of the multi agent systems.

We have implemented a prototype of the
TRACE system, in which it is possible to
introduce multi agent systems with different
problem solving abilities and processes. We
intend to formulate a ssimple problem to be
solved by the multi agent systems. We then
intend to measure the number of
decommitments made and determine if this
measure is a reasonably accurate measure
of the performance of the multi agent
system.



5. Conclusions

In this paper we made an attempt at trying
to understand the basis of intelligent
measures used in the human society.
Research in agent systems and multi agent
systems led to the development of
architectures that in some way try to mimic
the problem solving skills in human beings.
Thus the science of intelligent quotient
measurements can be applied to the domain
of intelligent agents and multi agent
systems. In market based agent systems, we
propose that the number of decommitments
made by an agent along with the resources
consumed is a measure of its ability. In
more cooperative settings different but
appropriate measures need to be designed.
We conclude that the measures need to be
designed by considering a family of agent
architectures. For example we fed that a
measure designed for a market based agent
system will be ill suited for a cooperative
multi agent system. We are currently
experimenting with a multi agent system
TRACE to understand the criteria for
measuring its performance.
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ABSTRACT

Quantitatively evaluating the effectiveness of software ar-
chitectures for multi-robot control is a challenging task.
Exacerbating the problem is the fact that architectures are
typically constructed to address different design goals and
application domains. In the absence of benchmarks that
capture the variety of issues that arise in multi-robot co-
ordination and cooperation, the system developer can only
evaluate an architecture for its own qualities. In this article,
we summarize the metrics of evaluation that we utilized in
applying our ALLIANCE architecture [17] to eight differ-
ent application domains for multi-robot team control. We
explore the implications of the metrics we have chosen and
offer suggestions on future productive lines of research into
metrics for multi-robot control architectures.

Keywords:
LIANCE

Multi-robot cooperation, metrics, AL-

1 Introduction

Research work in multi-robot systems has progressed sig-
nificantly in recent years. Issues that have been stud-
ied are diverse, and include task planning and control
[1, 17, 12]; biological inspirations [6, 7, 13]; motion coor-
dination [27, 2, 4]; localization, mapping, and exploration
[22, 21]; explicit and implicit communication [5, 9]; co-
operative object transport and manipulation [23, 25]; re-
configurable robotics [28, 24, 26]; and multi-robot learning
[11, 12, 10]. Demonstrations have been given of multi-robot
teams performing a variety of tasks, such object pushing,
foraging, cooperative tracking, traffic control, surveillance,
formation-keeping, and so forth.

However, most of this research is very specific and illus-
trates only one or two basic concepts per project. Compar-
isons across different methodologies are difficult and quanti-
tative evaluations of various multi-robot control algorithms
are scarce. While this is not unexpected for a field as new as
cooperative robotics, enough progress has been made that
we believe it is time to begin determining how we identify
and quantify the fundamental advantages and characteris-
tics of multi-robot systems. The characteristics most often

cited for motivating the use of multi-robot teams are as
follows:

e increased robustness and fault tolerance through re-
dundancy,

e a potential for decreased mission completion time
through parallelism,

e 3 possibility for decreased individual robot complexity
through heterogeneous robot teams, and

e an increased scope of application due to tasks that are
inherently distributed.

Other than direct measures of time, these characteris-
tics are hard to quantify, yet vital to enabling the field to
make objective comparisons and evaluations of competing
architectures. Thus, much research is needed in this area.

2 Background

Measuring the performance of intelligent systems in gen-
eral, and multi-robot systems in particular, is a much-
understudied topic. Some beginning work has been accom-
plished by Balch [3], who has developed metrics for mea-
suring multi-robot team diversity. However, little research
has addressed the general issues of cooperation that provide
guidelines for the quantification and selection of the appro-
priate cooperative team for any given set of mission specifi-
cations. Such a characterization would be a significant step
towards the commercialization of cooperative systems, as it
would facilitate the design of the appropriate cooperative
team for a given application. Issues of particular interest
in such a characterization include the following:

¢ Quantifying the overall system capability versus the
system complexity,

e Determining the appropriate distribution of capabili-
ties across robot team members for a given application,

e Ascertaining the most appropriate control strategy for
a given robot team applied to a given application so
as to maximize efficiency, fault tolerance, reliability,
and/or flexibility, and



e Determining tradeoffs in control strategies in terms of
desirable traits, such as efficiency versus fault toler-
ance.

Examples of this type of research include [8], which de-
velops measures of effectiveness and system design consid-
erations for the generic area coverage application, and [14],
which compares the power of local versus global control laws
for a “Keeping Formation” case study. However, much more
work remains to be accomplished towards the development
of quantitative comparisons of alternative approaches to co-
operative team design. An understanding of the factors that
influence the relative performances of various approaches to
cooperative control will enable not only an evaluation of ex-
isting methodologies, but will also aid in the design of new
cooperative control approaches.

Since addressing the issue of quantitative measurement
and system integration for the entire field of cooperative
robotics is extremely challenging, we have begun work in
this area by focusing on our experiences with the AL-
LIANCE architecture. We developed the ALLIANCE ar-
chitecture [17] to enable fault tolerant action selection in
multi-robot teams. The focus was on an approach that op-
erated successfully amidst a variety of uncertainties, such
as sensory and effector noise, robot failures, varying team
composition, and a dynamic environment. We have imple-
mented ALLIANCE in eight different application domains
in the laboratory. This experience is the basis for our begin-
ning work in the development of general metrics and system
integration as it applies to the use of ALLIANCE.

3 Brief Overview of ALLIANCE

We developed the ALLIANCE architecture to enable fault
tolerant action selection in multi-robot teams. The focus
was on an approach that operated successfully amidst a va-
riety of uncertainties, such as sensory and effector noise,
robot failures, varying team composition, and a dynamic
environment. The ALLIANCE architecture, shown in Fig-
ure 1, is a behavior-based, distributed control technique.
Unlike typical behavior-based approaches, ALLIANCE de-
lineates several behavior sets that are either active as a
group or are hibernating. Each behavior set of a robot
corresponds to those levels of competence required to per-
form some high-level task-achieving function. Because of
the alternative goals that may be pursued by the robots, the
robots must have some means of selecting the appropriate
behavior set to activate. This action selection is controlled
through the use of motivational behaviors, each of which
controls the activation of one behavior set. Due to con-
flicting goals, only one behavior set is active at any point
in time (implemented via cross-inhibition of behavior sets).
However, other lower-level competencies such as collision

The ALLIANCE Architecture
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Figure 1: The ALLIANCE architecture for multi-robot co-
operation.

avoidance may be continually active regardless of the high-
level goal the robot is currently pursuing.

The motivational behavior mechanism is based upon the
use of two mathematically-modeled motivations within each
robot — impatience and acquiescence — to achieve adaptive
action selection. Using the current rates of impatience and
acquiescence, as well as sensory feedback and knowledge of
other team member activities, a motivational behavior com-
putes a level of activation for its corresponding behavior set.
Once the level of activation has crossed the threshold, the
corresponding behavior set is activated and the robot has
selected an action. The motivations of impatience and ac-
quiescence allow robots to take over tasks from other team
members (i.e., become impatient) if those team members
do not demonstrate their ability — through their effect on
the world — to accomplish those tasks. Similarly, they allow
a robot to give up its own current task (i.e., acquiesce) if
its sensory feedback indicates that adequate progress is not
being made to accomplish that task.

We have shown that this approach can guarantee, under
certain constraints, that the robot team will accomplish
their objectives [15]. We have implemented this approach
in a wide variety of applications in the laboratory on sev-
eral different types of physical and simulated robot systems.
Figures 2 and 3 illustrate these different implementations.
The implementations include the “mock” hazardous waste
cleanup [17], box pushing [20], janitorial service [16], bound-
ing overwatch [16], formation-keeping [14], cooperative ma-
nipulation [18], cooperative tracking of multiple moving tar-
gets [19], and cooperative production dozing. These imple-
mentations and results now give us the basis for studying
issues of metrics within this framework.



4 Evaluation of Metrics in AL-

LIANCE Applications

In [16], the ALLIANCE architecture was demonstrated to
have the important qualities of robustness, fault tolerance,
reliability, flexibility, adaptivity, and coherence, which we
identified as critical design requirements for a cooperative
multi-robot team architecture. These broad characteristics,
however, were determined based upon qualitative evalua-
tions of the various implementations we have performed.
Ideally, we would prefer to have more quantitative metrics
of evaluation for these higher-level team characteristics.

On a more application-specific level, we used several met-
rics to evaluate robot team performance within each of these
applications. Table 1 summarizes the metrics we used to
analyze the performance of multiple robot teams in eight
different ALLTIANCE implementations. In these applica-
tions, concrete indicators of mission success were used, such
as numbers of objects moved, distance traveled, or number
of targets within view. Improved mission quality was based
upon the time taken to achieve these indicators. This is nat-
ural, since a primary benefit of multiple robot teams is using
parallelism to achieve mission speedup. In these implemen-
tations, no single metric was found to be most useful. The
need for a variety of metrics suggests that system perfor-
mance measures are application-dependent. These exam-
ples also illustrate that, for typical applications, the most
important issues are whether and how well the robot team
completes its mission.

By focusing on application-specific metrics, however, the
broader-perspective qualities of robustness, fault tolerance,
adaptivity, etc., are not made explicit. Instead, these char-
acteristics are hidden in the application-specific measures.
Thus, any shortcomings in a robot team’s ability to oper-
ate robustly or with a high degree of fault tolerance, for
example, would be measured by an increased time to com-
plete the mission (or by never completing the mission at
all), a decreased distance traveled, fewer objects moved,
etc. It would be difficult, therefore, to determine the rela-
tive levels of contribution of the various broader-perspective
qualities (e.g., fault tolerance vs. adaptivity) to changes
in the application-specific quantitative measures (e.g., dis-
tance traveled). Thus, if one wants to explicitly measure
fault tolerance across several control architectures, and/or
several application domains, these metrics are not suitable.

An important goal of research in the quantitative evalu-
ation of robot control architectures is, therefore, the devel-
opment of metrics that enable quantitative measurement
higher-level characteristics, including fault tolerance, re-
liability, flexibility, adaptivity, and coherence. By aver-
aging the results across multiple application domains, we
would then be able to explicitly compare alternative con-
trol architectures in terms of these important application-
independent characteristics. Our continuing research is

IS T S R N _ﬁE

Figure 2: Implementations of the ALLIANCE architecture
(on both simulated and physical robots). From top to bot-
tom, these implementations are: “mock” hazardous waste
cleanup, bounding overwatch, janitorial service, and box
pushing.



Application domain | # Robots | Metric description | Metric definition

1. “Mock” hazardous 2-5 (P) a. Time of task tmaz
waste cleanup completion
b. Total energy fmar S ei(t),
used where ¢;(t) is energy used by
robot 7 through time ¢ (m robots)
2. Box pushing 1-2 (P) Perpendicular dist. dy(t)/t,
pushed per unit time | where d, (t) is L distance moved through time ¢
3. Janitorial service 3-5 (S) a. Time of task tmax
completion
b. Total energy fmar S ei(t),
used where e;(t) is energy used by
robot 7 through time ¢ (m robots)
4. Bounding 4-20 (S) Distance moved d(t)/t,
overwatch per unit time where d(t) is distance moved through time ¢
5. Formation-keeping 4 (P &S) Cumulative izgw > itteader Gi(t);
formation error where d; = distance robot ¢ is misaligned at ¢
6. Simple multi-robot 2-4 (P) Number of Jj(t)/t,
manipulation objects moved where j(t) is number of objects at goal at time ¢
per unit time
7. Cooperative 2-4 (P) Avg. number of A=y ime s | (B0
tracking 2-20 (S) targets observed where B(t) = [bi;(t)]mxn, (m robots, n targets)
(collectively) b;j (t) = 1 = robot i observing target j at ¢,
N 1 if exists ¢ s.t. bij(t) =1
9(B(#),7) = { 0 otherwise
8. Multi-vehicle 2-4 (S) Quantity of earth q(t)/t,
production dozing moved per unit time | where ¢(t) is quantity of earth moved through ¢

Table 1: Summary of metrics used in ALLIANCE implementations. (In the second column, “P” refers to physical robot
implementations; “S” refers to simulated robot implementations.)



Figure 3: Additional implementations of the ALLIANCE
architecture. From top to bottom, these implementations
are: cooperative manipulation, formation-keeping, cooper-
ative tracking of multiple moving targets, and cooperative
production dozing.

aimed at developing these higher-level metrics for the eval-
uation of robot team performance.
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ABSTRACT

We outline how an agent’s shared autonomy considerations affect
its interaction in a team. A unified model of acting and speaking
will be presented that includes teaming and autonomy. This model
is applied to the domain of satellite constellation. We introduce our
simulator and outline our application of autonomy and teaming
concepts.

KEYWORDS: Multi-agent Systems, Shared Autonomy,
Agent Teams

1. INTRODUCTION

We have presented Situated Autonomy as a moment-by-
moment attitude of an agent toward a goal and have argued
that it isauseful notion in modeling social agents[6].

~]
S

—>

e T

Figure 1 Action Selection

We argued that a combination of the nature and the
strength of an agent’s beliefs and motivations lead the agent
to perceive one of the following: (a) the agent chooses itself
to be the executor of the goal, (b) the agent delegates the
goa entirely to others, (c) the agent shares its autonomy

" Thiswork is supported by AFOSR grant F49620-00-1-0302.

9University of North Dakota
Grand Forks, North Dakota, 58202

with other agents, or (d) the agent has arelatively small and
undetermined responsibility toward the goal. Our focus in
this paper is when the agent perceives shared autonomy.

Situated autonomy is an important part of an agent’s
action selection. Figure 1 shows a very simple action
selection in Belief Desire Intention (BDI) paradigm and the
role of situated autonomy. Along with goals and beliefs, we
believe situated autonomy is used in the process of
determining intentions. The process can be highly cognitive
as in planning or less cognitive as in reaction generation.
Enablers are the agent’s perception of its own abilities,
social factors, tools, and resources.

There are many accounts of starting or joining ateam [2,
4, 10]. We favor the ingredients of intentional cooperation
laid out by Tuomela: (a) collective goal or plan, (b) strong
correlation among member’s interest or preferences, and (c)
having a cooperating and hel ping attitude.

We believe that in common situations, an agent’'s
situated autonomy changes at a lot faster pace than its
participation in a team. Once an agent perceives shared
autonomy toward a goal, it may be inclined to recruit one or
more agents to form a team. After a team is formed, the
agent’ s degree of shared autonomy will change at the speed
of perceived changes to the cognitive ingredients of situated
autonomy. A recruited agent’s degree of shared autonomy
will be smaller than the recruiter’s shared autonomy but
after ateam isformed will changeto any level.

We are developing a model that unifies acting and
speaking [7]. This model uses production rules to encode a
conversational policy. A conversational policy is a
modeling system that is designed to encode a set of
conventions shared among a group of agents [5]. Such
systems are generaly caled Normatives [1,10]. A
prototypical agent follows the conventions of the group in
communicating and sharing mental states. However,
situated autonomies of each agent will individualize its
interactions and allow it to deviate from the expected
behavior.



We will present a model of conversational model in
generic, non-BDI format. Each agent will personalize parts
of conversational policy in its own BDI paradigm. A
conversation policy is two types of simple production-like
structures we will call transitions, shown below.

physical condition * spoken word/phrase * speak state
=> speak state
physical condition * speak state
=> spoken word/phrase

To model physical actions of an agent in reactive
behaviors, we introduce two other types transitions, shown
below.

physical condition * spoken word/phrase * act state
=> act state
physical condition * act state
=> act

A number of agents may share a unified model. For
example, a group of agents may share a conversational
policy. The shared model becomes their Norm. By entering
a model and tracking the shared states, agents can
synchronize their actions. Privately, each agent will
consider transitions in terms of beliefs or goals, and
intentions.

In the genera model, physica conditions arbitrate
among productions that provide alternative acts or words at
agiven state. However, each agent will have a personalized
perception and interpretation of the physical conditions in
terms of beliefs. We consider agents' situated autonomy and
teaming consideration is determined by the agent’s unique
perceptions of the common physical conditions. Below we
rewrite the transitions from an agent’s perspective and add
situated autonomy. ‘Physical conditions and ‘spoken
word/phrases it hears' are things about which an agent has
beliefs. The states are the agent goals (or interchangeably
desires). The ‘physical act’ or ‘chosen word/phrase for
communication’ are the objects of an agent’ sintentions.

Belief(physical condition) *
Belief(spoken word/phrase) *
Goal(speak)
= Goal(speak)
Belief(physical condition) *
Goal(speak) *
situated autonomy
=> Intention(spoken word/phrase)
Belief(physical condition) *
Belief(spoken word/phrase) *
Goal(act)
=> goal(act)
Belief(physical condition) *
Goal(act) *
situated autonomy
=> Intention(act)

The remainder of this paper is organized by working
through an example of a unified model and how agents can
personalize the physical conditions and consider teaming
and changes in their Shared Autonomy. We will present a
simulation of a constellation of satellites that can be tasked
from ground. We will show our unified model and related
issues of learning autonomy level using this application
domain. We have not yet conducted experiments with
situated autonomy and hence we consider this report a
preliminary report.

Figure 2. The Server’sgraphic screen

2. SSIMULATION OF A CONSTELLATION
OF SATELLITES

We have developed our own satellite simulator to illustrate
our research ideas outlined in this paper. The simulator
follows the principles of TechSat 21 [8]. SaVi is a similar
software created at the Geometry Center at the University of
Minnesota for the visuaization and analysis of satellite
constellations [3]. It has been used to simulate various
satellite constellations such as Globalstar, Iridium, and
Teledesic. SaVi differs from ours in that it is simply a
simulator of orbital satellite constellations, and does not
implement autonomy inits satellites.

Our simulator is composed of two primary modules; the
server, and the agent. The server module handles the
creation of all agent objects in the simulation and acts as a
router to facilitate the passing of messages between various
agents. There are two types of agents that can be created
within this environment, satellite agents and ground station
agents. These agents are implemented as objects and have
similar capabilities, with the satellites having the additional
ability to change their location within the environment. The
server module is aso responsible for the accurate



representation of all objects in the graphical environment
(Figure 2).

The agent modul e contains the functional components of
the agents. These components constitute the essence of the
agent’ s purpose and functionality. Behavioral functions and
autonomy states can be created and transitioned by
accessing these module components through the use of
behavior rules in the agent’s behavior file. Behavior rules
are comprised of conditional checks and assignment callsto
the functional components in the form of simple production
rules.

The satellite simulator was implemented using Mesa and
supported by the collision detection routines which are part
of the SOLID library package. The simulation is comprised
of acentral solid sphere surrounded by a wire-frame sphere
to establish a latitude/longitude coordinate system. The
sphere is currently scaled to represent the earth, and
rotational velocity is approximately 120 times nominal.
Graphically, the satellites are represented as green spheres
with groundstations being yellow spheres on the planet's
surface. The entire simulation can be rotated on any of the
three axises. This allows for the simulation to be viewed
from various prespectives. Additionally, any agent can be
selected to be "tracked" in the simulation. This has the
affect of centering the agent at the origin, with al other
objects, including the planet, revolving around the agent.
Blue line segments are used to show connections between
satellites that have a line of sight communications
capability, or connections between a satellite and a ground
station (Figure 4). The SOLID library was used to make
this determination, since the Mesa libraries do not directly
support the detection of  intersections between the
connecting line segments and the planetary bodies. All
satellites orbit at velocities which are appropriate for their
altitude, with respect to a planet such as the earth.

The satellites and ground stations that orbit and reside on
the planet are implemented as objects and have
communication capability to other agents via message
passing through the socket connection with the server. The
position of each of these agents is determined by the data
that is provided to the server in a text file. The text file
contains only the most basic of information necessary to
place the agent in the graphics environment of the server.

As each agent object is created, it reads a behavior file,
which contains the rules that will govern its actions with
respect to communication policy and physical actions that
may be needed to achieve a desired goal. The format and
examples of these rules is described in more detail in the
next section.

3. TAKING 3SCANSOF AN AREA

Assume the ground station will need three independent
images of a given longitude and latitude from agiven
altitude. Let's call the task 3Image. The ground station
issues the command to the nearest satellite and that satellite
will be responsible to perform the task either by itself if no
satellites are available. The satellite will complete the
images itself taking one image in each orbit crossing the
given location. If the satellite so decidesit recruits other
satellites to complete the task. Each of the recruited
satellites may recruit another satellite. After recruiting one
satellite, either satellite may decide to recruit athird
teammate.

Figure 4. Communication lines

Here we will present a conversational policy that will
govern interagent communication.

Thefollowing are the agent speak states:
0 — Start state
1 — Ground station has issued a command and a Satellite has
received this message.
2 — A satellite has received and accepted the command.
3 — A second satellite has been contacted.
4 — The second satellite has accepted the command.
5— A third satellite has been contacted.
6— The third satellite has accepted the command and we
now have ateam.
7- Ground control has received the first image.
8- Ground control has received the second image.
9- Ground control has received the third image.
10- Success State



11- Failure State. This state occurs when any of the images
are not received in a reasonable amount of time. State O is
the start of 3-imaging.

Thefollowing are the set of available words/phrases:

SO0 — Satellite agent says “Hello” to other agents to
announce its presence, if it is currently idle.

S1 — Ground station issues a command 3Image [Longitude]
[Latitude] [Altitude]

S2 — A satellite accepts command. The satellite says "Roger
to 3Image"

S3 — Ground states acknowledges that ateam leader has
agreed to take the task and will now accept images by
speaking “ Ready to receiveimages’.

S4 — A satellite recruits another satellites for 3Image. The
satellite may say “ Team 3Image?’

S5 — If asatellite accepts the reguest for being part of ateam
for 3Image, it may say “Willco”.

S6 - If asatellite rejects the request for being part of ateam
for 3Image, it may say "Unable".

S7 —"“bye" is spoken when ateam member is no longer able
to be part of the team.

S8 —“Downloading Image #1” is spokenwhen image#1 is
downloaded to the ground Station.

S9 —“Downloading Image #2” is spokenwhen image#2is
downloaded to the ground Station.

S10 — “Downloading Image #3” is spoken when image #3
is downloaded to the ground Station.

S11 —“Received Image #1” is spokenwhen image#1is
received by the ground Station.

S12 —“Received Image #2” is spokenwhen image#2is
received by the ground Station.

S13- The ground station may say “Task Complete” when all
three images are received.

S14- With an excessive silence, the policy ends
unsuccessfully, “Task Aborted”.

The following are the physical conditions For each
condition we note the agent that perceivesit.

PO — Start condition.

P1 - There is a need for 3Imgaing and a satellite is chosen
for tasking. This condition is perceived by GROUND only.
P2 - Satellite is unable to participate in a team for one of
two reasons: It is in danger or it has not yet finished its
previous task. This condition is perceived by the SAT that is
contacted to perform the task.

P3 — Satellite is able to take lead on atask and is available.
This condition is perceived by SAT only.

P4 — Another satellite is detected that can potentially be a
team-mate. Thisconditionis perceived by SAT.

P5- Satellite is able to be a team-player. This condition is
perceived privately by the SAT. All SAT agents privately
perceive conditions P6-P10.

P6- An image has been collected.

P7- An image has been successfully collected and
transmitted to the ground station.

P8- Two images are successfully collected and transmitted
to the ground.

P9- Three images are successfully collected and transmitted
to the ground.

P10— The chosen Satellite has received the command.
Ground station is now ready to receive images. This
condition is perceived by GROUND only.

P11- All the external conditions and instrumentation
conditions for taking a picture are met.

In the following speak state transitions, each agent's
typeis noted by a “GND” for ground station or “SAT” for
satellite. SATAVL, TIMEOUT, UNABLE, AND PICT are
boolean conditions. SATAVL determinesif a satellite agent
isavailable (free of prior tasks and capable of taking on new
a task) for the current agent. The availability is determined
with respect to the satellite’'s current speak state and
physical conditions. TIMEOUT holds if an excessive
amount of time has elapsed since the last change in speak
state. PICT indicates if the agent has any pictures that can
be downloaded to the ground station. UNABLE denotes the
satellite’s propioception of being busy with a prior task or
somehow being “out of service”. PICT denotes the absence
of such acondition. “SPK :<destination>" construct is used
to specify to whom the spoken phrase is intended.
CUR_AGNT is the agent most recently identified as
available by the SATAVL check. The default CUR_AGNT
is the speaking agent.

The following are the speak-state transitions.
PO*1*GND*S1*=»0

P3*0*SAT*S1>1
P3*1*SAT*S3>2
P4*2*SAT*S4=>3
P4*4*SAT*S4=>5
P4*3*SAT*S6>2
P4*3*SAT*S4>4
P4*5*SAT*S5>6
P5*0*SAT*S3>2
P2*3*SAT*S7>0
P2*4*SAT*S7=>0
P2*5*SAT*S7=>0
P2*6*SAT*S7>0
P2*7*SAT*S720
P2*8*SAT*S7=>0
P4*4*SAT*S7=>2
P4*5*SAT*S7>3
P4*6*SAT*S7>4
P7*2*SAT*S11=>7
P7*4*SAT*S11>7
P7*6*SAT*S11=>7
P6*2*SAT*S11=>7
P6*4*SAT*S11=>7
P6*6*SAT*S11>7
P8*7*SAT*S12->8



P6*7*SAT*S12->8
P7*7*SAT*S12->8
P9*8*SAT*S13->9
P6*8*SAT*S13->9
P7*8*SAT*S13->9
P8*8*SAT*S13=>9
P10*0*GND*S2=>1
P10*1*GND*S3=>2
P10*2*GND*S8=>7
P10*7*GND*S9->8
P10*8*GND*S10=>9
P10*9*GND*S13->10
1*SAT*S14=>11
2*SAT*S14=->11
3*SAT*S14=>11
4*SAT*S14=>11
5*SAT*S14=>11
6*SAT*S14=->11
7T*SAT*S14=>11
8*SAT*S14=>11
P10*1*GND*TIMEOUT=>11
P10*7*GND*TIMEOUT=>11
P10*8*GND*TIMEOUT=>11

The following are the speak transitions SA denotes the
agent’slevel of situated autonomy.

PO*0*SAT*TIMEOUT=>SPK:ALL*SO
P1*0*GND*TIMEOUT=>SPK:CUR_AGNT*S1
PO*0*SAT*S4=>P5
P3*1*SAT > SPK:ALL*S2
P10*1*GND=>SPK:ALL*S3
P4*2*SAT*SA=> SPK:ALL*S4
P5*0*SAT*S4=>P2
P6*2*SAT*SA=>SPK:ALL*S5
P7*2*SAT*SA=>SPK:ALL*S8
P4*4*SAT*SA=> SPK:ALL*S4
P2*4*SAT*SA=>SPK:ALL*S7
P7*4*SAT*SA=>SPK:ALL*S8
P2*6*SAT*SA=> SPK:ALL*S7
P7*6*SAT*SA=> SPK:ALL*S8
P2*0*SAT > SPK:ALL*S6
P2*3*SAT 2> SPK:ALL*S7
P2*5*SAT 2> SPK:ALL*S7
P2*7*SAT > SPK:ALL*S7
P2*8*SAT > SPK:ALL*S7
P8*7*SAT 2> SPK:ALL*S9
P9*8*SAT =2 SPK:ALL*S10
P10*7*GND=>SPK:ALL*S11
P10*8*GND=>SPK:ALL*S12
P10*9*GND=>SPK:ALL*S13
P10*11*GND=>»SPK:ALL*S14

Thefollowing are the act transitions. “A” denotes an act,
which in 3Imaging is taking a picture.

P11*2*SAT*SA> A
P11*4*SAT*SA> A
P11*6*SAT*SA> A

In addition to the conversational policy and action rules
(above), we have designed rules for our agents to infer
physical conditions based on exiting physical conditionsand
their current speak states and either (a) what they hear, (b)
propioception of time or success of their own task (taking a
picture), or (c) perception (availability of another satellite
for teaming). We will consider these rules to be more
domain oriented and intended for internal use of agents.
Collectively, we will refer to these rules as domain rules.

The following are mainly based on hearing.

P1*0*GND*S2->P10
P2*0*SAT*S7=>P0
PO*0*SAT*S1>P3
P4*4*SAT*S5>P3
PO*0*SAT*S3=>P5

The following are mainly based on agent perception.

PO * 0 * GND*SATAVL= P1
P3*2*SAT*SATAVL=>P4
P3*4*SAT*SATAVL > P4

The following are mainly based on agent propioception.

P1*1*GND*S1*TIMEOUT=>P0
P5*2*SAT*PICT=>P6
P4*6*SAT*PICT->P6
P4*6*SAT*PICT=>P7
P6*2*SAT*PICT=>P7
P6*4*SAT*PICT2>P7
P6*7*SAT*PICT=>P8
P7*7T*SAT*PICT=>P8
P6*8*SAT*PICT=>P9
P7*8*SAT*PICT=>P9
P8*8*SAT*PICT=>P9
UNABLE =2>P2

4. USING CONVERSATIONAL POLICY

Agents can use the conversational policy for forming their
beliefs, goals, and intentions. Each agent will apply the
policy, action, and domain rules to new messages it
receives. The following is our highest-level 1oop pseudo
code for agent update.

For (agent; 1; numAgents)
While (new receive message)

1. Determine SA
2. For (rule; 1; numRules)
If (rule applies)
a. Perform transitions
Use SA to resolve conflicts

b. Update beliefs and goals

3. Perform the intention for speaking or acting
within reaction constant



Given a goa and the prevailing physical conditions agents
constantly update their SA. SA isused in resolving conflicts
in rules and in final decision of intention to be formed.
Based on situated autonomy agents perform their picture
taking or recruit other agents as teammates. The GND agent
will note PO or P1 (and form a belief) and will instantiate an
instance of 3Imaging conversational policy. GND will
maintain state 0 as its goal. Being in state 0 and having
perceived P1, GND will use a speak transition to intend and
then to issue S1. If the satellite (call it SAT1) has received
the message S1 the speak state transition is used to reach
state 1. GND and satellite SAT1 share the goal of being in
state 1. SAT1 may perceive P3 and using a speak state
transition to arrive at a desire to be in state 2 and also form
an internal goal in achieving the command. GND does not
determine P3 so it has no access to this perception. It
however has access to the state transition that allows it to
desire state 2. In state 2, SAT1 privately considers P3, P4,
and P11 and arrives at a determination of situated
autonomy. In 3Imaging, the lead agent once it reaches state
2, must consider exogenous physical conditions 3, 4, and 11
along with all agent endogenous factors to determine its
autonomy. If it decides on shared autonomy, the agent must
begin recruiting other agents as teammates. Otherwise, it
will either do the task itself or delegateit to others.

If SAT1’s decision favors a team formation, it uses a
state transition to arrive at state 3 and forms a desire in it.
Due to space limitation, we will not discuss the details of
team formation. Since P4 is not shared with GND, it does
not have the same belief. Let’'s call the second Satellite
SAT2. SAT1 and SAT2 now share the desire to be in state
3. If SAT2 perceives P5, it will use a state transition and
moves to state 4 and forms adesire in state 4 and the goal to
be a teammate in 3Imaging. If SAT2 perceives P2, it will
inform SAT1 and move back to state 2. SAT2 no longer has
to want state 3. SAT1 will desire State 2.

For an agent that is recruited to be ateammate in state 4
it has already decided to have shard autonomy. It must
consider its exogenous physical conditions 3 and 4 (P3 and
P4) along with all agent endogenous factors to determine its
autonomy in order to decide whether yet another teammate
is needed. If it decides to recruit another agent it will move
through statesto state 6.

For an agent that is recruited to be ateammate in state 6
it has already agreed to have shard autonomy and sinceit is
the third member of the team no other teammates are
needed. Conditions P6-P9 may be perceive by either
Satellite agent and all SAT agents share goalsin state 7-11.

In the next section we will briefly discuss how autonomy
will vary.

5.AUTONOMY MEASURES

Situated Autonomy depends on time, and strengths of belief
and goal. [6]. Each agent reacts at different speeds. The
times between sensing and acting is an agent’s reaction
constant and the optimal values can be learned. This greatly
affects the agent’ s autonomy decision. Temporally, from the
shortest reaction time to the longest, an agent’ s autonomy is
based on it's pre-disposition, disposition, and motivation.
Therefore, an agent’s reaction constant is important. An
agent’s beliefs used in autonomy decision vary from weak
to strong. An agent’s goals are directed to self, other, or
group. The goals vary in strength of motivation from weak
to strong.

In 3Imaging, agents have different reaction constants and
we are experimenting with the effect of slow versus fast
reacting satellites. An agent’s beliefs are about the physical
conditions and the speak states and change in strength. The
goals are about taking images and they vary based on the
agent's prior commitment. If a Satellite agent has
committed to a 3lmaging task, it might commit to yet
another 3Imaging command if it senses that it can complete
the task. After the first command, the motivation level for
the goal is set to be less than for the first command. A
combination of belief and goal degrees are used for
determining SA.

As of thiswriting, our implemented system runs and images
are gathered. However, we do not yet have situated
autonomy experiments. We plan to compare runs of the
system with different reaction constants. The autonomy
levels in our agents will be learned as combinations of
beliefs and goals. The metrics we will use for feedback are
timeliness of images collected.

6. SUMMARY AND CONCLUSION

We have developed a production-style representational
framework that unifies acting and speaking. Our
representation extends conversational policy scheme. It
explains how agents can use the shared normative models of
conversational policy for forming private beliefs, goals, and
intentions. We outlined a scheme for flexible teaming that
uses the notion of situated autonomy.

We have implemented our model in the domain of
constellation of satellites. Our system runs but we have not
yet completed experiments with how timely team formation
improves our system performance.
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Abstract

A distributed expert system for monitoring the
critical telemetry (the Key Monitors) of Hubble
Space Telescope (HST) has been designed and
developed. The Key Monitors Expert System
(KMES) monitors the general health of the space
craft operation through analysis of the Key
Monitors data. KMES uses rule-based
approaches and notifies operators/system
engineerswhen it receives alimit violation from
Front End Processor subsystem (FEP). The
design of KMES s similar to the design of a
previously reported system called “Expert
System for Automated Monitoring” (ESAM)
which was developed for HST [1]. However,
KMES uses an approach different from ESAM’s
approach. ESAM was designed to monitor all
telemetry mnemonics in a selected subsystem via
establishment of tight limits for mnemonics. On
the other hand, KMES has been designed to
monitor the Key Monitors, providing
notifications for out-of-limit conditionsin
accordance with documented operational
procedures. Upon detection of an out of limit
conditions, KMES analyzes data for
contingencies. It fires appropriate rules to request
associated engineering data from telemetry
repositories. Subsequently, KMES sends e-mails
and e-pages to notify the appropriate System
Engineers (SEs) and Operators. The duration of a
limit violation is monitored to eliminate transient
faults. KMESIogsall out of bound (limits)
violations but only takes an action for each
persistent violation. In addition, the distributed
system design approach of KMES allows apre
screening of data variations to reduce the number
of queued rules. Also, design of KMES was
modified to include only selected part (sub-
database) of a main database into KMES's
subprocesses. The sub-database contains data
associated with mnemonics that are used within
the associated subprocess. This approach
significantly reduced the required real-time
execution time and the memory usage for the
expert system.
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KMES also allows the user to override any
activated miscompare. Thisfeature permits
operators to adjust for known anomalies or
changesin operational context. The system
generates event messages to override actions; the
eventsinclude auser login ID and the reason for
the override.

Currently, KMES includes rules to monitor
seven subsystems. KMES rules can be expanded
to include rules for other subsystems. This paper
describes the fundamental design and features of
KMES. Theresults for asimulated scenario
leading to failure of aKey Monitor and timely
detection of the failure by KMES and ESAM are
presented.

1 Background

The Vision 2000 Command and Control System
(CCS) Product Development Team has been
formed to reengineer the HST ground system
[2,3]. The CCS ground system consists of
several systems including System Monitoring &
Analysis (SYM). Development of an expert
system for telemetry monitoring, fault detection
and recovery for the HST isone of the SYM's
responsibilities.

Prior to design of KMES, the SYM group
developed areal-time Expert System for
Automated Monitoring (ESAM) [1]. The system
was designed and devel oped to monitor the
general health of the spacecraft and to detect
faults within the Hubble Space Telescope (HST)
viamonitoring all telemetry mnemonics within a
selected subsystem. It employs model-
based/rule-based, hierarchical fault tree analysis
with forward-chaining rule propagation to
compare expected state values with true states.
The system uses a custom-built neural network
model and System Engineer (SE)-provided
algorithmsto dynamically derive the expected
state values based on knowledge of real-time or
stored spacecraft commands. During operations,
real-time telemetry values (i.e., true states) are
compared to the expected state values for



possible limit violations. The duration of alimit
violation is monitored to eliminate transient
faults. The system logs all miscomparisons but
only issues a system event message for each
persistent miscomparison. The persistence
implementation approach significantly reduces
the number of false miscompare messages.
Currently, ESAM only includes rules and models
associated with fault detection in Electrical
Power System (EPS) of HST. Further expansion
of ESAM for monitoring other subsystems of the
spacecraft encountered two problems. First, for
acquisition of telemetry data, from Information
Sharing Protocol (ISP) into the expert system, a
shared memory technique was employed to
overcome synchronization between RTserver,
the expert system server [1], and the | SP server.
This desigh employed RTdag, a COTS product
from Talarian Inc. [6], that acquired datafrom
shared memory and transferred datato RTserver.
Further tests and analysis of results revealed that
occasionally datawas dropped during
transmission from the shared memory to RTdag.
In addition, RTdaq did not have provisions for
transmitting status flags that accompany the
telemetry data from I SP, which indicate the
general health and validation of the data. Second,
modeling and devel opment of rules, for
incorporation of dynamic limits, required a
significant amount of time from experts and
system engineers with high level of expertisein
the relevant subsystems of HST.

In order to overcome the first problem, it was
decided to develop new moduleswith direct
interface between RTserver and ISP viaan
existing middieware. For the second problem, it
was decided to monitor the critical telemetry (the
Key Monitors) and notify expertsin accordance
with Key Monitors documentation [7]. In this
design, the limit values are constants that are
defined in the Project Reference Database
(PRD). The Front End Processor (FEP)
subsystem of CCS detects limit violations for all
monitors. KMES receives the Key Monitor
values as well asthe companion status flags from
FEP. The status flag indicates limit violated Key
Monitors. These new enhancements were
incorporated into the design of KMES, and
delivered as a part of a CCS Release delivery.
The following sections describe the design
features of the developed system.

2 Introduction

Expert systems are corner stones of knowledge
Management [4,5] foundations and as such are
designed to reduce dependency on humans and
increase reliability of complex systems. For
many cases, expert systems are simply away to
codify the explicit and sometimes tacit
knowledge of experts (operators and system
engineers) so it can be used to provide guidance
and solutions for known problems. The real time
Key Monitors Expert System (KMES) was
designed and devel oped to automate the experts
monitoring of the Key Monitors. In concept,
KMES has been developed to automatically
monitor the general health of spacecraft
operation and notify operators and system
engineers upon recognition of defined anomalies.

The Key Monitors are defined in the HST
Contingency Plan document [7]. This document
establishes a consistent and approved response to
out of limit conditions or misconfigurations
throughout mission operations. The out-of-
bound limits have constant values defined in the
Project Reference Database (PRD). In general,
PRD includes two sets of limits namely yellow
limit and red limit. For some Key Monitors
mnemonics, the yellow and red limits coincide.
In these cases, the response associated with red
limit violation has priority over the response
associated with the yellow limit violation. The
FEP subsystem determines viol ated telemetry
and sets a status flag, which accompaniesthe
mnemonic value. For example, the FEP sets the
companion status flag for amnemonicto “L”
when the telemetry value drops below the lower
value of the red limit associated with the
mnemonic. The following sections describe the
devel oped system.

3 System Description

KMESis primarily arule-based expert system.
KMES subscribes and receives the Key Monitors
mnemonic values and the companion status flags
from ISP. Most of KMES rules are simple and
the hierarchy is shallow. However, the required
actions for some limit violations are contingent
on configuration or statuses of other equipment.
Therefore, the rules associated with these limit
violations have hierarchical levels. Upon
detection of aviolation, KMES looks for
persistence of the violation. If the mnemonic’s
value remains beyond limit boundaries, for a
time greater than the persistence period, KMES
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Figure-2 shows process architecture for KMES.
KMES consists of sub-processes for data
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Originally, KMES employed a single database
where all of KMES's processes included a copy
of the data-base. However, this approach caused
excess increase in the size of run time memory
usage when KMES was expanded to include all
seven subsystems of HST. Therefore, the design
of KMES was modified to reduce the size of
memory usage. In this new approach, every
subprocess of KMES includes part of database
that contains data related to mnemonics which
are referenced or used within the subprocess.
The following sections briefly describe function
and features of each sub-process within KMES

41 Receive Telemetry Data (RTD)

The RTD process receives change-only data
from the ISP server. RTD sends this data to the
other KMES processes viathe RMD process.
Originally this subprocess employed RTdaq (a
commercial product) and shared memory
approaches for synchronization between RMD
and | SP. However, it was found that occasionally
data was dropped out during transmission
between shared memory and RMD. In addition,
RTdaq did not have capabilities to transmit
status flags, which accompany the telemetry
data. ISP sends the status flags as a part of data
throughout the CCS subprocesses. These status
flags indicate the status of data and they are set
by the FEP subsystem within the CCS. A blank
status flag indicates that the datais valid. At this
time, 1SP sends telemetry data with status flags
that are set to nine possible values, one at atime.
The status flag values are prioritized, four of
these valuesindicate that the telemetry valueis
beyond pre-specified limits as defined in the
PRD. The remainders of the status-flag values
indicate if there has been a problem with data
conversion or data transmission. The RTD
subprocess was enhanced to eliminate the use of
RTdaqg aswell as the shared memory approach.
The enhanced version constructs custom
designed data-packetsthat arein
RTsmartSockets format. The packets contain
changed only data and are sent to RTserver
(RMD) for distribution to subprocesses within
KMES.

4.2 Manage States (MGS)

The MGS process receives real-time telemetry
datafrom|SP and generates compare status
associated with each received Key Monitors

mnemonic. The compare status indicatesif there
is amiscomparison (corresponding to alimit
violation). This subprocess sets compare status
in accordance with values of status flags that
accompany telemetry data received from ISP. A
compare status mnemonic may take four
different values for a miscomparison
corresponding to four possible ways of limit
violations:

a) Yelow Low;
b) Yellow High;
¢) RedLow;
d) RedHigh.

Y ellow limits are warnings as specified by
system engineers. Red limits are typically for
serious violations associated with hardware
limitations. MGS sends all compare status
changes along with their status flags and time
stamp to REF subprocess via RMD.

4.3 Respond to Events and Faults (REF)

REF includes all rules associated with limit
violated Key Monitor mnemonics. Upon receipt
of amiscomparison associated with Key
Monitors from MGS, REF tracks the
miscomparison for a pre-specified period of time
(persistence time). If the limit violation persists,
then REF fires the appropriate rules and sends
appropriate historical datarequest with specified
start time and stop timeto the Analysis
subsystem. REF also sends an event that
indicates detection of the anomaly. The event
message also indicates how soon the requested
data product will be available for access by SEs
or operators. The Analysis subsystem receives
information for the data request from REF and
retrieves the historical datain accordance with
the format specified by SE(s) and Operators. The
list and format of the datarequest are stored in
specially designed files called “Historical
Request Definition Files'.

4.4  Publish Monitored Data (PMD)

The PMD process receives state data consisting
of mnemonic’s name, value, and time stamp

from MGS (viaRMD) while publishing this data
to ISP. Along with this datathereis astatusflag
indicating the override status of the mnemonic’s
value. The status flag indicates whether the user



has overiden the mnemonic value within KMES
or that the mnemonic valueis derived by KMES.

45 Route Monitoring Data (RMD)

The RMD process consists of areal time
RTserver. The process receives and routes data
and event messages within KMES's processes.

5 KMES Characteristic Features

KMES consists of agroup of distributed
processes that communicate through a
middleware layer. This modular design has many
advantages such as maintainability and
flexibility in where and how these processes are
executed. If one processis overloading system
resources, it can be relocated to another host
machine. Among other advantages, KMES
employs adistributed system approach to
facilitate:

a) Change Dataonly executions
b) Maintenancesimplification

This approach provides a capability to queue
only those rulesthat are affected by the status of
amnemonic. In thisway, only the rules that have
to send a historical data request and e-mail or e-
page will be fired and therest of the rules will

not be examined until later times when a status
change affects them.

6 Results

KMES has been devel oped with rules associated
with actions that are required when aKey
Monitor has violated its limits. Currently, Rules
associated with the following seven subsystems
of HST have been implemented:

Data Management Subsystem (DMS)
Electrical Power Subsystem (EPS)

Instrumentation & Communication Subsystem
(1&C)

Optical Telescope Assembly (OTA)

Pointing Control Subsystem (PCS)

Safing Subsystem (Safing)

The following section discusses the results
obtained from operation of KMES during a
simulated anomaly. For comparison, the results

of the previously designed system, ESAM, for
the same simulated anomaly is also
demonstrated. Asit was mentioned earlier,
ESAM detects anomalies by comparing the
engineering telemetry received from HST with
some internally generated expected val ues.
ESAM analyzes the discrepancies between the
true and expected statesto determineif an
anomaly actually exists. Therefore, ESAM uses
some tight and dynamically calculated limit
boundaries. In contrast, KMES depends on some
predefined and fixed limit boundaries.

The following section, compare the results from
ESAM and KMES for asimulated scenario
leading to failure of asensor in the Electrical
Power System of the spacecraft.

7 Scenario

Thetest scenario was designed to examine the
rule executions resulted from an anomaly
associated with one of the HST batteries. The
spacecraft is equipped with six batteries. If only
four batteries are nominal then the entire battery
system is considered acceptable for normal
operation. Previously captured datafrom a
routine spacecraft orbit was fed into the HST
simulator. The simulator was started in play back
mode with continuous data feed. Figure-3 shows
voltages for the first and the second batteries of
the spacecraft, respectively. Figure-4 showsthe
currents associated with the first and second
batteries. Figure-3 and Figure-4 also depict the
high-expected limit and the low-expected limit
calculated by ESAM. For comparison, Figure-3
also shows the constant limits used for Key
Monitors out of bound violations. As shown, the
constant limits are normally wider than the limits
calculated by ESAM. The results for battery one
demonstrates that the system was in normal
operation until time 23:05, at thistime (point A)
aramp down sensor anomaly was simulated into
the telemetry datafor voltage of thefirst battery.
Figure-3 shows that within about 4 minutes and
40 seconds (point B) into the incident, the
battery voltage fell below the low limit as
calculated by ESAM. However, Figure-3 shows
that after 9 minutes and 30 seconds into the
anomaly, the battery voltage fell below the
constant limit used by the FEP. At thistime
KMES received an associated status flag from
FEP that indicated the limit violation. Therefore,
KMES queued the rules associated with the
battery anomaly and sent appropriate



notifications and historical datarequestswhen
the limit violation persistence was satisfied. The
results show that ESAM detected anomaly
within about five minutes after initiation of the
anomaly. However, KMES sent anomaly
notifications within ten minutes after initiation of

Telescope has been developed and delivered.
Theresultsfor the first release of this system are
presented. The following highlights some of the
items sought for improvement and further
enhancements of the monitoring system:

the anomaly. a) avariable persistence time for each or subset
of the Key Monitor mnemonics;
b) retrieve appropriate operating procedure(s)
8 FutureWork for response associated with an anomaly;
c) track violation changes from yellow limit
A well-structured distributed expert system to boundary into red limit violation boundary;
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notifications frequency associated with each
of the limit violations;

€) GUI editor interface for visualization and
graphical editing of rules.

9 Conclusion

A distributed expert system, KMES, for
notification of anomaly and initial response (i.e.,
request associated engineering data for analysis)
has been developed. The results of KMES for a
simulated failure has been compared with similar
results obtained from a previously designed
expert system, ESAM. KMES uses the results of
anomaly detection with constant limit values
while ESAM calculates the expected limit
boundaries. The results for detection of asample
sensor failure by the two systems are
demonstrated. It was found that when cal culated
limits are employed then anomaly might be
detected earlier than when constant limits are
used for detection of the anomaly. However,
notification of limit violations based on constant
and established limits provides facilities for
timely development of KB rules and execution
of approved notifications.

10 Nomenclature

CCs Command and Control System

ESAM  Expert System for Automated
Monitoring

FEP Front End Processor

ISP Information Sharing Protocol

KMES  Key Monitors Expert System
11 References

[1] “A Real-Time Expert System for Automated
Monitoring of the Hubble Space Telescope,”
R. Fakory and E. Ruberton, Intelligent
Systems Conference, Gaithersburg, MD,
September 1998.

[2] Consolidated HST Associated Mission
Products (CHAMP) Contract, NA S50000.

[3] "Re-engineering of the Hubble Space
Telescope (HST) Reduce Operational Costs
(Partll),” M. Garvis, K. Lethonen and W.
Burdick, internal report.

[4] “Knowledge Management Handbook,” Jay
Liebowitz, CRC Press 1999.

[5] “Development and Deployment of a Rule-
Based Expert System for Autonomous Satellite
Monitoring,”

L. Wong, F.Kronberg, A. Hopkins, F. Machi,
P. Eastham, Astronomical Data Analysis, Vol
101, 1996.

[6] Talarian Corporation, support@talarian.com.

[7] “Hubble Space Telescope (HST)
Contingency Plan document,” Vol2, Lockheed
Martin Missiles &

Space (LMMS), report No. LM SC/P061924,
1997.
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ABSTRACT

This paper provides a new framework for the distributed
intelligent control of complex systems. The behavior of a
given subsystem as it interacts with other subsystems is
explored. The inherent limitations associated with distrib-
uted planning and control procedures are revealed. These
limitations further limits one ability to evaluate system
performance. Knowing these limitations, allows one to
seek improved procedures for managing complex systems,
which should also lead to improved system performance.

1. INTRODUCTION

Measuring system performance inherently represents a
subjective task, beginning with the definition of the con-
sidered system. The decision of what system elements
will be included within the considered system is arbitrary.
Moreover, excluding elements from the considered sys-
tem does not eliminate the potential for these elements to
interact with the considered elements. Rather, such inter-
actions become inputs to the considered system, whose
values cannot be controlled. The definition of the consid-
ered system necessarily constrains the performance of the
system because one must relinquish control of these envi-
ronmental inputs.

Any performance criteria employed to evaluate a
system must be based upon system variables that can be
measured and controlled. Hence, the scope of the consid-
ered system inherently constrains the type of performance
evaluations that can occur. Often there are multiple crite-
ria to be considered, which necessitates compromise among
the appropriate criteria. Compromise requires a subjec-
tive prioritization among the considered criteria, making
absolute performance evaluations nearly impossible to
achieve.

It becomes difficult to analyze and manage a com-
plex system as a single monolithic entity. Complex sys-
tems are better represented as systems-of-systems. Again,
the definition of the included subsystems is arbitrary. Fur-
thermore, each included subsystem will have its own state

and control variables. These variables again constrain
which performance criteria can be considered by each sub-
system. What often emerges is a collection of subsystems
whose behaviors are characterized via different perfor-
mance criteria.

Even if a monolithic specification for the system!s
planning and control problems can be made, there are still
shortcomings, expecially since the monolithic approach
ignores the system-of-systems nature. Monolithic speci-
fication do not capture the multi-resolutional nature of
complex systems where given subsystems address system
variables at different levels of detail and on different time
scales. Monolithic approaches do not scale well. For large-
scale systems, monolithic approaches become impossible
to implement.

On the other hand, distributed planning and con-
trol introduces other problems. Todayl(s distributed plan-
ning and control technologies do not capture the true na-
ture of the distributed planning and control requirements
for complex systems. Most decomposition procedures for
distributing planning still assume that a monolithic plan-
ning problem exists (see Lasdon [1] and Wismer [2]). In
general, this monolithic planning problem cannot be de-
fined; and even if it could, its complexity would be well
beyond the scope of problems that can be addressed with
available decomposition procedures. Decomposition al-
gorithms further seek an optimal solution to the mono-
lithic planning problem. However, the relationship of op-
timal planning at the subsystem level toward the optimal
planning for overall system within which it resides is sim-
ply not understood. Today, we do not know how to coor-
dinate the planning at a subsystem in order to insure glo-
bal optimality for the overall system within which the sub-
system resides.

Control is essential to implement plans. Again,
the current distributed control technologies are limited.
Perhaps the most common distributed control procedure
is the slow-fast decomposition (see Kokotovic et al. [3]).
Slow-fast decompositions certainly can address situations
where the desired response is known. They usually as-
sume that an aggregated description for the overall response
is known over an extended horizon, which includes the



current time. Subsystems then manage the detailed de-
scription of this same trajectory over a shorter horizon
which again includes the current time. This process con-
tinues where each subsystem addresses more detail over
an even shorter horizon beginning with the current time.
Implicitly, a monolithic control policy has been developed
in that one assumes that the desired aggregate response is
known over the entire time horizon.

Distributed intelligent control (distributed planning
and control) approaches do not permit a monolithic de-
scription of the desired system trajectory. Rather, the sys-
tem trajectory evolves as a collective response of several
subsystems considering different temporal horizons and
system elements. The planned response and the associ-
ated implementing actions evolve with time. Neither the
monolithic planning or control problems are ever stated or
solved. It is obviously difficult to manage such systems.
Even more difficult is projecting their performance.

I revisited the distributed planning and control
problem last year. My desire was to define what a distrib-
uted planning control system could accomplish. All the
basic principles, including optimality and controllability,
were set aside. The goal was to determine how a sub-
system could address its assigned planning and control re-
sponsibilities while effectively interacting with other sub-
systems. Subsequently, the coordination of the interac-
tions among the entire ensemble of distributed planning
and control systems in order to provide an effective over-
all system response had to be addressed Testing effective-
ness became a concern given the inherent inability to de-
fine the overall system problem as it continued to evolve
in time.

This paper provides a brief discussion of the basic
discoveries arising from this rapprochement. The funda-
mental principles of optimality and controllability have
been reexamined and mathematical proofs/arguments do
exist for the inherent limitations. Unfortunately, space limi-
tations prevents me from providing these mathematical ar-
guments. Instead, this paper will provide basic discover-
ies only. The paper first investigates how subsystems in-
teract with each other. Next, the comprehensive nature of
the overall system response arising from these interactions
is addressed. Finally, the inherent limitations upon plan-
ning and control will be itemized. These limitations fun-
damentally impact one(s ability to manage and project sys-
tem performance. They must be addressed.

Input from Environment
Accepted Assigned
Goals Goals
Assignors ' Subsystem Acceptors
j&'; Feedback 1Fmad:a.:k #
e

If no Assignors, then . . [ ner Accepiors, Hien
suehsystem & Crealor. Output upon Environment subsystem is Process.

Figure 1: Basic interactions for a subsystem.

2. FUNDAMENTAL CONCEPTS

We begin our development with two basic assumptions:

¥ Most complex systems can be represented as a collec-
tion of subsystems that interact with each other. That
is, complex systems are actually systems of sub-
systems.

¥ Each subsystem has a purpose, which it fulfills by ex-
ecuting tasks. Furthermore, the tasks that each sub-
system can execute are related to the tasks that other
subsystems can execute.

Consider a single subsystem. Its associated con-
trol inputs include (see Figure 1):
¥ Endogenous control inputs that it generates in order to

implement its planned response.
¥ Assigned goals from other subsystems.
¥ Feedback information from other subsystems.
¥ Exogenous inputs from a subsystem/s environment.

For a given subsystem, the assigned goals and
feedback information might also be considered as exog-
enous inputs because these are generated by other sub-
systems. However, a given subsystem can determine which
goals it will accept. The goals that it assigns to other sub-
systems will also influence their behavior and subsequent
feedback information. Thus, only environmental inputs
cannot be influenced in any manner by a given subsystem.

Should the subsystem have an option to accept or
reject a goal? We believe that such an option is essential
in order to insure that the recipient subsystem can feasibly
respond to the goal. If one subsystem cannot satisfy its
assigned goals, then the subsystem cannot respond in a
feasible manner and the ability to control the subsystem is
diminished or eliminated.

The assignment of goals to another subsystem rep-
resents one type of output that can occur as a subsystem
responds to its control inputs. In addition, the given sub-
system must provide feedback information to any other
subsystem from which it has accepted a goal. Finally, the
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Figure 2: Network representation of subsystem relation-
ships.

subsystem may also generate outputs that act upon the
system[s environment.

Typically, when one seeks to coordinate sub-
systems, one employs hierarchical based notions of super-
visors (supremals) and subordinates (infimals). Hierar-
chies, right or wrongly, have been the subject of much re-
cent criticism. In this paper, our desire is to provide a
neutral atmosphere for discussing such coordination con-
cerns.

We define the Assignors as the set of controllers
that can assign goals to a given subsystem. Acceptors are
the set of subsystems to which a subsystem can assign
goals. Figure 1 depicts the proposed relationships among
the subsystems.

There are two special situations. If the set of As-
signors for a given subsystem is empty, then the subsystem
receives only exogenous inputs from the its environment
and feedback information from its Acceptors. We refer to
such a subsystem as a Creator because it generates goals
only, and does not accept any goals from any other sub-
system. Every system model requires at least one creator.
However, Creators are generally artificial constructs re-
sulting from the modeling process. That is, the Assignors
for a Creator are assumed to be outside the scope of the
modeled system. Thus, goals coming from these external
subsystems, or implicit Assignors, are viewed as inputs to
a Creator from the system(s environment.

Ifthe Acceptors set for a given subsystem is empty,
the subsystem is a Process. Processes can accept and pro-
cess goals, but they cannot reassign their goals to any other
subsystem. Hence, Processors can only accept inputs from
their Assignors and the system[s environment. In response
to these inputs, they generate outputs upon the environ-
ment and provide feedback information to their Assign-
ors.
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Figure 3. Hierarchical system(s) where each sub-
system (node) has at most one Assignor.

We can graphically represent the proposed sys-
tem structure (see Figure 2). We first define a node for
each subsystem. We then employ directed arcs from a given
subsystem(s node to each node within its Acceptors set.
Finally, from each subsystem node within a given
subsystem(s Assignors set, we draw a directed arc to the
node for the given subsystem. Using network terminol-
ogy, the Creator(s) become the source(s) to the system
network while the Processes are the sinks.

In general, there can be more than one path from a
given Creator to a given Process. (In Figure 2, there are
multiple paths from node 1 to node 7.) However, there
need not be a path from every Creator to every process.
(In Figure 2, there is no path from node 1 to node 8.) In
the special case where the number of elements in each
subsystem(s Assignors set is less than or equal to one, the
representative system network becomes a tree and repre-
sents a conventional hierarchy (see Figure 3). If there is
more than one Creator in the hierarchical case, then the
overall system must be represented as a set of disjoint hi-
erarchies that do not interact with each other (see Figure
3).

Although the potential for loops can exist within
a system/s network, loops should not exist from the con-
ceptual point of view. Later we will show that the detail
considered by an Acceptor is greater than its Assignor. We
will also show that the planning horizon for any Acceptor
should be less than that of the Assignor. Loops could oc-
cur when an Assignor for a given subsystem is also con-
tained in the given subsystem(s Acceptors set. However,
if a subsystem is simultaneously contained within the Ac-
ceptors and Assignors sets for another given subsystem,
then the simultaneous Acceptor/Assignor must be less de-
tailed from the system to which it assigns goals and more
detailed than the same system from which it accepts goals.
Obviously, the two implied relationships are contradictory.



Therefore, we may conclude that the network representa-
tion of the relationships among subsystems for all mean-
ingful systems must be a directed acyclic network (con-
taining no loops).

The reader should note that we have spoken of
goal assignments rather than tasks, as mentioned earlier.
We assume that a goal can contain a task. Moreover, a
goal can also describe how an assigned task should be ex-
ecuted. For example, the Assignor might request that the
task be completed by a given time or completed at mini-
mum cost.

3. TOWARD AN INTEGRATED APPROACH

No (sub)system can generate an optimal response when
acting as an independent agent. A given subsystemls re-
sponse is dependent upon its goals and the subsequent re-
sponse of the subsystems to which it has assigned goals.
Furthermore, one cannot demonstrate that the collective
response arising from the coordinated interaction among
all its subsystems is optimal because we have not (and
cannot) define the overall problem.

Because no subsystem can respond independently
from the other subsystems, it follows that each subsystem
must constantly interact with other subsystems: its As-
signors and Acceptors. However, a given subsystem|s in-
teractions with an Assignor are fundamentally different
from its interactions with an Acceptor. Each subsystem
considers a time interval and a level of detail that differs
from those of its Assignors and Acceptors. Each subsystem
must move from its current state to a specified goal state
while responding to any external inputs from the overall
system(s environment and any peculiarities that arise in
its own dynamic evolution.

Let us consider the interaction of a given sub-
system with its Assignors. A given subsystem can only
address its behavior over an interval. Nevertheless, the
way in which a subsystem responds within a time interval
can affect the future behavior of the entire system beyond
the considered time interval. The problem is that the given
subsystem is incapable of assessing these future conse-
quences beyond the time interval that it considers. The
subsystem must instead rely upon the subsystems contained
within its Assignors set to make such assessments. In per-
forming this function, each Assignor considers the future
in order to specify goals for the given subsystem. The
subsystem receiving the goals employs those goals in or-
der to define its desired final state at then end of its plan-
ning horizon.

Similarly, most subsystems are also limited by the
level of detail that they can consider. In order to affect the
more detailed responses that are required to meet its as-
signed goals, each subsystem assigns goals to its Accep-
tors. Thus, as each Acceptor addresses an assigned goal, it
provides a more detailed system response on behalf of the
subsystem that assigned the goal. The subsequent feed-
back information provided by the Acceptor during its ex-
ecution of an assigned task assists the Assignor in assess-
ing the beginning state for its planning horizon. (Later we
will demonstrate that this beginning state for a subsystem!s
planning horizon cannot be the current system state. It
must always be a projected future state from which the
given subsystem will attempt to a desired final state.) Two
extremes, or boundary conditions, for a given subsystem/(s
planning/control problem have now been specified. Its
included planning and control (intelligent control) capa-
bilities then guide the given subsystem from its projected
initial state toward the desired final state while respond-
ing to forecasted environmental inputs and other peculiari-
ties of the system response.

Every element of the subsystem(s planning/con-
trol problems changes with time. The subsystem/s esti-
mate of its initial state changes as its Acceptors execute
their assigned tasks. The subsystem(s goal changes with
time as its Assignors respond to feedback information that
the subsystem provides. Finally, the forecasts for the
subsystem/s future interactions with its environment must
be constantly updated.

We can now define three basic functional require-
ments for each subsystemls intelligent controller. These
include:

Task Accepting: The intelligent controller must interact
with the intelligent controllers that manage each subsystem
within its Assignors set. The purpose of this interaction is
to define new goals and to update current goals. Each
assigned goal specifies at least one task to be addressed
along with a set of constraints. Because an Assignor ad-
dresses the system in a more aggregated sense than the
subsystem that accepts the task, the Task Accepting func-
tion must decompose the assigned tasks into subtasks. In
addition, the execution constraints accompanying each ac-
cepted task must also be reformulated in order to specify
appropriate (or consistent) constraints for each defined
subtask.

The task decomposition and the associated con-
straint specification comprise a goal decomposition pro-
cess. This goal decomposition must guarantee that the



accepted goals can be satisfied given the accepting
subsystem/(s current state. The Task Accepting function is
also responsible for continuously updating the projected
response of the subsystem as feedback information to each
Assignor. Remember, however, that an Assignor consid-
ers the system response in an aggregated manner. Thus,
the Task Accepting function must summarize its projected
response in order to provide the estimated performance
statistics that can be understood by its Assignor.

Task Assigning: After the assigned goals are decomposed,
the resulting subtasks and their associated execution con-
straints must be reassigned to the subsystem[s Acceptors.
In making the subsequent goal assignments, the Task As-
signing function will employ the selected control law that
implements the subsystems current plan. The Task As-
signing function also monitors feedback information from
each Acceptor to which it has assigned a goal. Using this
feedback information, it projects the future performance
of the subsystem as it continues to execute its assigned
goals under the selected control law. This projected re-
sponse is then employed by the Task Accepting function
within the same intelligent controller in order to provide
feedback information to the subsystem[s Assignors.

Performance Improvement: The system now has an es-
timated current state as well as a projected response as it
implements its current goals under the planned response
and enabling control law. The Performance Improvement
Function continuously seeks a better control law for imple-
menting the subsystem/s assigned goals. Remember, how-
ever, that every element of the control problem is dynamic
and uncertainties do exist. Given this reality, closed-loop
control laws inherently perform best because they can tai-

A

lor their response to the system[s current state. It is also
desirable to employ predictive control procedures when-
ever the current control action depends upon both the
system[s current and predicted future state. Whenever a
new control law is selected, it is forwarded to Task As-
signing function for implementation.

4. THE FUNDAMENTAL PRINCIPLES OF A COORDINATED
RESPONSE

This section addresses the basic system response. Figure
4 provides a primitive schematic for the multi-resolutional
behavior of these systems. Let t, represent the current time
that advances with real-time. We then divide the future
time axis into several intervals, including [t , t), [t,, t,), [t,,
t,) and so forth. Note that we have not yet included a time
interval between [t , t,) or [t,, ¥ for reasons to be discussed
later. In Figure 4, the entire state vector has been pro-
jected as a single value upon the y-axis. This state trajec-
tory is further divided into segments: one segment for each
time interval specified above. Let us assume that each
segment corresponds to the trajectory for a given subsystem
operating under the control of its intelligent controller.
Considering the subsystem associated with the state tra-
jectory on the interval [t,, t,), its Assignors manage the
state trajectory beyond t,, while its Acceptors manage the
state trajectory on the interval [t,, t,).

Suppose we view each component of the state tra-
jectory as a sophisticated [Slinky.[] The multi-resolutional
nature of the systems implies that size and length of each
[Slinky[sCspring gets smaller and shorter as its associated
time interval approaches t. Now let us further assume
that two adjacent [Slinkies[Jare attached to each other and
that the boundary conditions must match at each junction.

>

hthy b tg 4

Time

Figure 4: Basic Schema for multi-resolutional system response.



The [Slinky[/for interval [t,, t,) interfaces with a larger
"Slinky, [ 'with less resolution, at t,. It also interfaces with
a shorter [Slinky,[ /with greater resolution at t,. Assume
also that each [Slinky[Ican manage its shape. However,
no [Slinky[Ican act independently of the others. Specifi-
cally, the [Slinky [lon interval [t,, t,) must interact with
the [Slinky[]operating beyond t, in order to define the
boundary conditions at t,. To be more precise, the Task
Accepting function of the [t,, t,)-subsystem must interact
with the Tasking Assigning functions for the Assignors of
the [t,, t,)-subsystem. Similarly, the Task Assigning func-
tion for the [t,, t,)-subsystem must interact with the Task
Accepting functions of its Acceptors. Finally, the shape
of the [Slinky! /between t, and t, is controlled by the Per-
formance Improvement function as the [t,, t,)-subsystem
responds to forecasted external inputs that will likely act
upon it during the interval [t,, t,).
Given the recursive system-of-systems nature for
the system, each Acceptor for the [t,, t,)-subsystem inter-
acts with the [t,, t,)-subsystem in a manner similar to the
way that the [t,, t,)-subsystem interacts with its Assignors.
Similarly, each Acceptor for the [t,, t,)-subsystem will simi-
larly interface with its own Acceptor (s Task Accepting func-
tions. Note also that none of the indicated subsystems can
touch t, because only a Process that has no Acceptors can
reach t,. (We will discuss this assertion later.)
Now, let us try to visualize the dynamic behavior
of the proposed system(s response. Remember, t, (the cur-
rent time) must continue to advance in real time. We may
assume that the entire state trajectory is dynamic, and nei-
ther the interface times (t, t,, [1 ) nor the boundary condi-
tions are fixed. Instead, the shared boundary conditions
between two adjacent [Slinkies[are constantly being re-
negotiated in real time. As the boundary conditions are
modified and the forecasts for the external effects upon a
given subsystem are updated, the intelligent controller re-
sponds by modifying the projected desired shape of the
[Slinky[Tbetween the appropriate interface times.
We have stated that only Processes can affect the
system in real time. Several important conclusions fol-
low:
¥ No interface time at the junction of two subsystems’
responses can ever occur. These interface times con-
stantly change with time and must always be greater
than the current time t .

¥ Only Processes react to real inputs from the external
environment. The other subsystems plan their response
based upon forecasted inputs from the environment
and their current negotiated boundary conditions.

¥ The planned trajectories of the non-processing sub-
systems are never realized. These planned trajecto-
ries only conjecture how the system will likely respond
for planning purposes.

¥ The purpose of the intelligent controllers for the non-
processing subsystems is simply to establish goals for
another subsystem. The recursive system-of-system
nature of these systems implies that these goals will
become more detailed as their interfacing times ap-
proach t .

Figure 4 does not adequately depict the interac-
tion between a given subsystem and its Assignor(s) and
Acceptors. In Figure 5, we provide a more detailed illus-
tration of the proposed interaction among the subsystems
as they interact with each other. It also illustrates the evo-
lution of time and the limitations that a given system has
in managing the response of the system.

Time advances from left to right in Figure 5. The
large sphere represents the state space for the aggregate
subsystem that projects into the most distant future. Within
that subsystem/s state space, there are two smaller spheres.
The right-most of these spheres represents the goal space
that the system seeks to reach at t,. In this case, we as-
sume that the final goal is established by the systemIs en-
vironment because the Assignors for this subsystem have
not been included within the system model. Note that this
is an arbitrary choice based upon the modeler(s desires
and is determined to a certain extent by how far the mod-
eler wants to forecast the system/s future response.

The left-most sphere within the largest sphere rep-
resents the forecasted state at t, from which the aggregate
subsystem initiates its planning. Thus, the aggregate sub-
system represented by the largest sphere will plan on the
interval [t,, t,). The values for both t, and t, are dynamic
and must increase with real-time, and t, is always greater
than t,. (The reader will note that we have not included t,
within the subsystem(s planning horizon because the goal
state at t, is specified by an agent outside of the modeled
system).

The role of the intelligent controller for the [t,, t,)-
subsystem is to determine the ideal trajectory from the
anticipated state at t, to the desired goal state at t,. During
that interval, the subsystem must also respond to other
external inputs. Because the planning interval is beyond
the current time, these external inputs must be forecasted.
Hence, the planned response on the [t,, t,) interval is a
projected response only. It will not (or cannot) be imple-
mented as planned.



The [t,-t,)-subsystem cannot manage the response
of the system before t, because it cannot address the detail
required to describe the systeml(s response prior to t..
Rather, this detail will be addressed by two other sub-
systems as indicated by the second largest spheres in Fig-
ure 5. The fact that the spheres are smaller has no relation
to the dimensions of each subsystem/s state space. Rather,
the diameters of the spheres correspond to the relative
length of the planning interval that each subsystem ad-
dresses.

The [t,, t,) subsystem estimates its initial state at
t.. Thus state is achieved by the subordinate!s response on
the [t,, t,) time interval. In order to manage the subordi-
nate subsystem/s response, the [t,, t,)-subsystem must de-
fine goal states for the two subsystems at t,V) and t %), re-
spectively. However, the state variables considered by the
subordinate subsystems are different than those consid-
ered by the [t,, t,)-subsystem. Hence, a transformation
between the state spaces must occur. This transformation
is implemented by the Task Assignor for the [t,, t,)-sub-
system as it interacts with the Task Acceptors within [t,,t,)-
subsystem(s Acceptors. This transformation involves two
types of interactions. With respect to the [t,, t,)-subsystem,
the first interaction determines a mutually acceptable set
of feasible goals for each Acceptor. The second interac-
tion monitors each Acceptor(s progress in achieving its
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assigned goals. Here, the Task Assigning function for [t,,
t,)-subsystem must transform each Acceptor(s projected
goal achievement into the corresponding state representa-
tion within the [t,, t,)-subsystem's state space. Moreover,
the individual Acceptor(s response must be integrated to
form a single composite estimate for the [t,, t,)-subsystem/s
initial state at t..

The goals established for the Acceptors will cover
the time interval up to t,* and t,*%), respectively. In order
to insure planning across the entire time interval up to t,, it
is essential that t, be less than or equal to either t,V) or t.®.
Thus, the planning interval for a given Acceptor usually
overlaps the planning interval of its Assignor(s). In addi-
tion, the state space for the individual Acceptors can also
overlap each other. For example, it might be possible for
both Acceptors to execute a given task. It is also possible
that the state spaces are not entirely congruent. One Ac-
ceptor might be able to execute tasks that the other Accep-
tor cannot.

On the other hand, the state trajectories through
the subsystemls state spaces must not intersect. Two dis-
tinct subsystems may not perform identical tasks upon the
same entity at the same time. Two or more subsystems
could possibly collaborate, but one subsystem would still
assume primary control of the entity and subsystem ac-
tions upon the entity must differ from the others in some

Figure 5. A more detailed representation of the multi-resolutional state evolution.



manner at a given time. A fundamental law of physics
prevents two objects from occupying the same region of
space and time simultaneously.

Given its desired final goal state at ", the [t,,
t.)-subsystem plans its response through its state space.
The [t,, t,V)-subsystem interacts with its Acceptors in or-
der to estimate its initial planning state at t,. This interac-
tion also establishes the goals for each of the [t,, t,(V)-
subsystem(s Acceptors at t,, t ® and t¥). Having estab-
lished each of their individual goals, the [t,, t.(")-
subsystem[s Acceptors can determine their individual ini-
tial planning states. The same process is repeated for each
state trajectory emanating from t, until a process, (which
has no Acceptors), is encountered. This terminating pro-
cess can be managed at t. Hence, the recursive planning
process generates a collection of state trajectories, each
beginning at t, and terminating at t,.

Figure 5 depicts a situation where hierarchical
planning occurs. Each subsystem has at most one Assignor,
and the collection of state trajectories illustrated in Figure
5 forms a tree. Observe that state trajectories continue to
divide as the diagram progresses from the most distant time
t, toward present time. Moreover, each subsystem has a
single state trajectory to manage. In Figure 5, we did not
include every possible subsystem in order to simplify the
figure. (Observe that some of the state trajectories do not
begin at t.) If all potential subsystems for a hierarchical
system were included, then every path in the state-trajec-
tory tree would start at t and terminate at a common root
att,.

Recently, hierarchical systems have fallen from
favor. Certainly, hierarchies, like all organizational struc-
tures, do have their limitations. However, most limita-
tions occur when the Assignors dictate their goal assign-
ments and the Acceptors cannot reject an assigned goal.
Recent management and distributed planning approaches
seek to empower the subordinate subsystems with greater
planning and control responsibilities. Contrary to popular
belief, such empowerment does not negate hierarchical
structures.

Unfortunately, there are situations where hierar-
chies are inappropriate. For example, the government typi-
cally seeks to prevent individual corporations from col-
laborating in order to create a monopolistic environment.

One benefit of the proposed approach is that we
can now characterize the limitations that arise when one
must employ a structure other than a hierarchy. In par-
ticular, we can now test many of the claims that the advo-
cates of other architectures have cited.

5. CONCLUSIONS

The efficacy of current planning and control technologies
requires a monolithic statement of the system/s planning
and control problems. If such monolithic statements can-
not be made, then available planning and control technolo-
gies are probably irrelevant. The above discussion dem-
onstrates that it will be impossible to provide such mono-
lithic specifications for most complex systems.

One might question whether it is possible to pro-
vide a monolithic statement for any system(s planning and
control problems. Remember that onels definition of the
system(s boundary is arbitrary. In most cases, the defined
system is still dependent upon other environmental sub-
systems that are being managed by other entities. A sub-
system seldom has complete control over its planning and
control responsibilities. Witout such control, it is impos-
sible to demonstrate optimality of a planned /executed sys-
tem response with respect to any performance criteria.
Given the current state of affairs, performance evaluations
for a given subsystem level or the composite system should
be avoided. The primary goal must be to develop improved
technologies for managing complex systems.
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Abstract the only means to judge an increase in probability is to run sta-
) ] . tistical tests over an appropriately sized sample of the agent’s
As agents approach animal-like complexity, evaluat-  apavior.

ing them becomes as difficult as evaluating animals. Computational systems, in contrast, are traditionally eval-
This paper describes the application of techniques for 5teq hased on thefinal results and/or on their resource uti-
characterizing animal behavior to the evaluation of com- i, 41i0n [29]. The historical definition of computational process
plex agents. We describe the conditions thatlead to the (¢ ¢ Bapbage, Turing, von Neumann) is modeled on mathe-
behavioral variability that requires experimental meth-  masica) calculation, and its validity is measured in terms of its
ods. We then review the state of the art in psycho-  iimate product. If the output is correct — if the correct value
logical experimental design and analysis, and show its 5 cajculated — then the computation is deemed correct as well.
application to complex agents. We also discuss a spe- \jore recent descriptions [e.g. 11] have added an assessment of
cific methodological concern of agent research: howthe ¢ ime, space, processor, and other resource utilization, so that
robots versus simulations debate interacts with statisti- 5 computation is only deemed correct if it calculates the appro-
cal evaluation. Finally, we make a specific proposal for  hyiate value within some resource constraints.
facilitating the use of scientific method. We propose the This characterization of computation is less applicable
creation of a web site that functions as a repository for - hen it comes to particular operating systems and other real-
platforms suitable for statistical testing, for results deter- - ime computational systems. These systems have no final result,
mined on those platforms, and for the agents that have g eng point summarizing their work. Instead, they must be
generated those results. evaluated in terms of ongoing behavior. Guarantees, where they

Keywords: agent performance, complex systems behavgxist, take the form of performance constraints and temporal in-

ioral indeterminacy, replicability, experimental design, subjec-variants. Although formal analysis of correctness plays a role
tive metrics, benchmarks, simulations, reliability. even in these systems, performance testing, including bench-
marking, is an essential part of the evaluation criteria for this

1. Introduction kind of computational system.

Computational agent design owes much to computer sci-
Humanoid intelligence is a complex skill, with many interact- ence. But the computationalist’s tendency to evaluate in terms
ing components and concerns. Unless they are in an excepf ultimate product is as inappropriate for computational agents
tional, highly constrained situation, intelligent agents can neveas it is for operating systems. Instead, metrics must be devised
be certain they are expressing the best possible behavior for the terms of ongoing behavior, performance rather than finitary
current circumstance. This is because the problem of choosinmgsult. But what is the analog to benchmarking when the tasks
an ordering of actions is combinatorially explosive [9]. Con- are under-specified, ill-defined, and subject to interpretation and
sequently, for scientists or engineers evaluating the behavior abserver judgment?
an agent, it is generally impossible to ascertain whether a be- In this paper, we will examine issues of running such eval-
havior is optimal for that agent. Albus [2] defines intelligence uations for complex agents. Byomplex agentsve mean au-
as “the ability of a system to act appropriately in an uncertaitonomous agents such as robots or VR characters capable of
environment, where appropriate action is that which increasesmulating humanoid or at least vertebrate intelligence. We will
the probability of success.” Systems of such complexity araliscuss hypothesis testing, including the statistical controver-
rarely amenable to proof-theoretic techniques [26]. In generakies that have lead to the recent revisions in the standard experi-



mental analysis endorsed by the American Psychological Ass@ystems by such criteria requires measurement over a popula-
ciation. We will also discuss recent advances in methodologieson of judges.

for establishing quantitative metrics for matters of human judg-

ment, such as whether one sentence is more or less grammas: Current Approaches to Hypothesis Testing

cal than another, or an anecdote is more or less appropriate. We

propose a means to facilitate hypothesis testing between groupE1€ Previous section presented a number of challenges to the
a simulation server running a number of benchmark tests. evaluation of complex, humanoid agent building techniques. In
this section we review methodologies used by psychology —

the evaluation of human agents — that are available to address
these challenges.

Although there is certainly a role for using formal methods in ~ Although it is obvious that comparing two systems requires
comparing agent architectures [e.g. 8, 6], what we as agent déesting, the less obvious issues are how many tests need to be
signers are ultimately interested in is comparing the resultingun and what statistical analysis needs to be used in order to an-
behaviorof our agents_ Given the numerous Complex Source§Wer these queStiOHS. In this section we describe three increas-
of indeterminacy in this behavior, such comparison requires th#gly common problems in Artificial Intelligence and discuss a
application of the same kind of experimental methodology thafet of experimental techniques from the behavioral sciences that
has been developed by psychology to address similar problem&n be used to address them.

In this section we review some of the sources of this indeter-  The first problem is variability in results: We need to know

minacy; in the next we will review analytic approaches for ad-Whether performance differences that arise over test replications
dressing them. can be ascribed to varying levels of a system’s ability or to vari-

The first source of indeterminacy is described above: Th&tion in lighting conditions, choice of training data, starting po-

combinatorial complexity of most decision problems makes abSition, or some other or some other external (and therefore unin-
solute optimality an impractical target. Thus even if there is deresting) source. Psychology uses statistical techniques such as

single unique optimal sequence of actions, in most situationd'€ Analysis of Variance (ANOVA) to address these issues. The

we cannot expect an agent to find it. Consequently, we will exSecond problem is of disentangling complex and unexpected in-

pect a range of agents to have a range of suboptimal behavio@,ra‘:tions between subparts of a complex system. This can also

and must find a way of comparing these. be addressed using ANOVA coupled with factorial experimen-

The next source of indeterminacy is the environment. Man}%al ?e"5|g:1/. IThﬁﬂth:;dhp:ort:llem i'tha;[\/ofdn%orcgjizly ar:dnmean-
agents must attempt to maintain or achieve multiple, possibl;}]hg Iu y evaluating ; ere tySL: J_ech € flla' bi CE;. a yt;?[sy
even contradictory goals. These goals are often themselves u 10l0gy experiments investigate innerently subjective maters,

certain. For example, the difficulty of eating is dependent on théhe f'?.ld. has developed a set of techniques that will be. of use
fo artificial agent designers as well. The next three sections de-

supply of food, which may in turn be dependent on situations ibe th luti i detail
unknowable to the agent, whether these be weather patternss(j‘rI € (hese solutions In more detail.
the presence or absence of other competing agents, or in humgn

societies, local holidays disrupting normal shopping. Thus in
evaluating the general efficacy of an agent’s behavior, we woulghe problem of comparing performance variability due to dif-
need a large number of samples across a range of environmenfalences in ability and variability due to extraneous factors is
circumstances. ubiquitous in psychology. It is dealt with by procedures known
Another possible source of indeterminacy is the developcollectively as Analysis of Variance or ANOVA.
ment of agents. As engineers, we are not really interested in
evaluating a single agent, but rather in improving the state-of:
the-art in agent design. In this case, we are really interested i%'l'l Standard ANOVA
what approaches are most likely to produce successful agents a typical experimental design for comparing performance, K
This involves uncertainty across development efforts, complisystems are tested N times each. If the variation in performance
cated by individual differences between developers. Many repetween the K systems outweighs the variability among each
sults contending the superiority or optimality of a particular the-system’s N runs, then the system performances are said to be
ory of intelligence may simply reflect effective design by the significantly different We then examine the systems pairwise
practitioners of that theory [e.g. 7]. to get information about ordering. The ANOVA allows us to in-
Finally, the emphasis of this workshop is on natural, humanf{er that e.g. although there are differences overall between the
like behavior. Humans are highly social animals, and social ack=4 systems (i.e. some are better than others), the performance
ceptability is an important criteria for intelligent agents. How- difference between 3 and 4 is reliable, whereas the difference
ever, sociability is not a binary attribute: it varies in degreesbetween 1 and 2 is not reliable because it is outweighed by the
Further, a single form of behavior may be considered more oamount of extraneous variation across the N tests. In this case,
less social by the criteria of various societies. Evaluations o&lthough 1 may perform on average better than 2, this does not

2. Motivation: Sources of Uncertainty

1 Variability in Results



imply that it is actually better on the task. If the experimentbeen observed [5]. The result is a probability distribution over
were repeated then 2 would have reasonable chance of perforivalues of the true difference. To summarize the distribution an
ing on average the same as 1, or even better. interval containing 95% of the probability mass can be quoted.

The notion ofreasonable chancesed above is the essence This takes the same form as a confidence interval, except that
of the concept of significant difference. System 3 is on averagés interpretation is much simpler: Given the observed results,
better than 4 in this experiment and the ANOVA tells us that perthe probability that the true difference is in the interval is 0.95,
formances are significantly different at the .05 level (expressedo if the interval contains 0, there is a high probability that there
as p<.05). This means that in an infinite series of experimen4ds no real performance difference between systems.
tal replications, if 3 is in fact exactlgs goodas 4, i.e. there The Bayesian approach makes no use of hypothetical ex-
is no genuine performance difference, then the probability operimental replications and is more naturally extended to deal
getting a performance difference as large or larger than the ongith complicated experimental designs. On the other hand, it
observed in this experiment is 0.05. The smaller this probabildoes require an initial estimate (or prior distribution) for the
ity becomes, the more reliable the difference is. In contrast, therobabilities of various values of the performance difference
fact that the average performances of 1 and 2 are not signifbefore seeing test data. There is much controversy about which
cantly different means their ordering in this experiment is notof these approaches is more appropriate. In the context of Al
reliable because there is a more than 0.05 probability that thRowever, we need not take a stand on this issue. The two ap-
ordering would not be preserved in a replication. proaches answer different questions, and for our purposes the

Notice that hypothesis testing using ANOVA does goar-  questions answered by classical statistics are of considerable
anteean ordering, it presents probabilities that each part ointerest. Unlike many of the natural sciences, the performance
the ordering is reliable. This is a fundamental difference beof Al systems over multiple replications is not only accessible,
tween experimental evidence and proof. Scientific method inbut of particular interest. To the extent we are engineers, Al
creases the probability that hypotheses are correct but it do@esearchers must be interested in reliability and replicability of
not demonstrate them with complete certainty. results.

The binary output of hypothesis tests (significant difference
versus no significant difference) and its probability is an unnec3 2 Testing for Interacting Components
essarily large loss of information. The American Psychological
Association have consequently recently moved to emphasizZzé@any unpleasant software surprises arise from unexpected in-
confidence intervals over simple hypothesis testingcoffi-  teractions between components. Unfortunately, in a complex
dence intervals a range, centered on the observed differencesystem it is typically infeasible to discover the nature of inter-
that in the hypothetical replications will contain the true perfor-actions analytically in advance. Consequeffégtorial experi-
mance value some large percentage, say 95%, of the time. mental desigiis an important empirical tool.
the example above, each system has a 95% confidence interval, As an example, assume that we can make two changes A
or error bar, centered on its average performance with widthand B to a system. We could compare the performance of the
determined by the amount of variability between runs. Whensystem with A to the same system without it, using the ANOVA
two intervals overlap, there is a significant probability that amethods above, and then do the same for B. But when build-
replication will not preserve the current ordering among the aving a complex system it is essential to also know how A and B
erages and we can conclude that the corresponding performangffect performance together. Separate testing will never reveal,
difference is unreliable. This method gives the same result apr example, that adding A generates a performance improve-
simple hypothesis testing above — the performances are nehent only when B is present and not otherwise. This is referred
significantly different — but is much more informative: confi- to as arinteractionbetween A and B, and can be dealt with by
dence intervals give an idea about how much variability there igesting all combinations of system additions, leading to a facto-
in the data itself and yield a useful graphical representation ofial experiment. Factorial experiments are analyzed using sim-
analytical results. ple extensions to ANOVA that test for significant interactions
as well as simple performance differences. Factorial ANOVA
methods are described in any introductory statistics textbook
[e.g 23].
Stating confidence intervals is more informative than simple Inthe discussion above we have implicitly assumed that dif-
significance judgments. However, it also relies on an hypoferences in performance can be modeled as continuous quanti-
thetical infinity of replications of an experiment. This aspectties, such as distance traveled, length of conversation or number
of classical statistical inference is a result of assuming that thef correct answers. When the final performance measure is dis-
true difference in performance is fixed and the observed daterete, e.g. success or failure, thiegistic regressioril, ch.4]
is a random quantity. Alternatively, in Bayesian analysis theis a useful way to examine the effects of additions or manipula-
difference is considered uncertain and is modeled as a randotions on the system’s success rate. Information about the effects
variable whereas the results are fixed because they have alreaafyarbitrary numbers of additions, both individually and in in-

3.1.2 Alternative Approaches to Analysis



teraction, is available using this method, just as in the factorial. Environments for Hypothesis Testing: Robots
ANOVA. Logistic regression also gives a quantitative estimate and Simulations

of how muchthe probability of success changes with various

additions to the system, which gives an idea of the importancés the previous sections indicate, one of the main attributes
of each change. of statistically valid comparisons is a large humber of experi-
mental trials. Further, these experimental conditions should be
easily replicable and extendible by other laboratories. In Sec-
tion 5. we propose that a good way to facilitate such research
is to create a web location dedicated to providing source code
L . . and statistics for comparative evaluations over a number of dif-
Often performanpe evaluation !n\_/olves judgments or ratiNg$g ot henchmark tasks. This has approach has proven useful in
from human subjects. C'ef"‘”y It is n_ot _enough that one SUbheural network research, and should also be useful for complex
ject judges an Al conversation to be lifelike because we do no gents. However, it flies in the face of one of the best-known

know how typical that subject is, and how robust their Opinionhypotheses of complex agent research: that good experimental

is. It would be _be_tter to choose a '?rger sample of raters, and_tf?]ethod requires the use of robots. Consequently, we will first
check that their judgments are reliable. When ratings are d'sfirovide an updated examination of this claim

crete (good, bad) or ordinal (terrible, bad, ok, good, excellent
then Kappa [22] is a measure of between-rater agreement thﬂt
varies from 1 (perfect agreement) to -1 (chance levels of agree-’

ment). For judgments of continuous quantities the intraclasgimylation is an attractive research environment because it is
correlation coefficient [13] performs the same task. easy to maintain valid controls, and to execute large numbers

of replications across a number of machines. However, there

However, such discrete classifications are often clumsy. Be;aye heen a number of important criticisms leveled against this

cause a rating system is itself subjective, the extra Variancﬁpproach

3.3 Quantifying Inherently Subjective Data

1 Arguments Against Simulation

added by difference in interpretation of a category can lose cor-
relations between subjects that actually agree on the relative va-
lidity or likeability of two systems. Further, we would really A
prefer in many circumstances to have a continuous range of dif-
ference values. Such results can be providethhgnitude esti-
mation a technique from psychophysics. For example, Bard

al. [4] have recently introduced the use of magnitude estimation
to allow subjects to judge the acceptability of sentences which
have varying degrees of syntactic propriety. In a magnitude esti-
mation task, each subject is asked to assign an arbitrary number
as a value for the first example they see. For each subsequent
example, the subject need only say how much more or less ac®
ceptable it is, with reference to the previous value, e.g. twice as
acceptable, half as acceptable and so on. This allows subjects to
pick a scale they feel comfortable with manipulating, yet gives
the experimenter a generally useful metric. For example, in
Bardet al's work, a subject might give the first sentence an 8,
the next a 4, the following a 32 — the experimenter records 1s,
.5s and 4s respectively. This method has been shown to reduce
the number of judgments necessary to get very reliable and ac-
curate estimates of acceptability, relative to other methods.

Bard et al. manipulate the sentences themselves, but it isC
clear that magnitude estimation can equally well be used to get
fine-grained judgments about how natural the output of a nat-
ural language processin§l[P) system is, and the degree to
which this is improved by adding new components. Nor is the
method limited to linguistic judgments, for it should be equally
effective for evaluating ease of use for teaching software, the
psychological realism of virtual agents or the comprehensibil-
ity of output for theorem proving machinery.

Simulations never replicate the full complexity of the real
world. In choosing how to build a simulation, the researcher
first determines the ‘real’ nature of the problem to be solved.
Of course, the precise nature of a problem largely deter-
mines its solution. Consequently, simulations are not valid
for truly complex agents, because they do not test the com-
plete range of problems a natural or embodied agent would
face.

B If a simulation truly were to be as complicated as the real

world, then building it would cost more time and effort than
can be managed. It is cheaper and more efficient to build
a robot, and allow it to interact with the real world. This
argument assumes one of basic hypotheses of the behavior-
based approach to Al [3], that intelligence is by its nature
simple and its apparent complexity only reflects the com-
plexity of the world it reacts to. Consequently, spending
resources constructing the more complicated side of the sys-
tem is both irrational and unlikely to be successful.

When researchers build their own simulations, they may de-
ceive either themselves or others as to the validity or com-
plexity of the agents that operate in it. Since both the prob-
lem and the solution are under control of the researcher, it is
difficult to be certain that neither unconscious nor deliberate
bias has entered into the experiments. In contrast, a robot is
considered to be clear demonstrations of autonomous arti-
fact; its achievements cannot be doubted, because it inhabits
the same problem space we do.



4.2 Are Robots Better than Simulations? takes place on robots, to date the simulator league provides far
more “realistic” soccer games in terms of allowing the demon-
These arguments have led to the wide-spread adoption of th@ration of teamwork between the players and flexible offensive
autonomous robot as a research platform, despite the knowghd defensive strategies [21, 19]. This success has encouraged
problems with the platform [16]. These problems reduce essefthe RoboCup organization to tackle an even more complex sim-
tially to the fact that robots are extremely costly. Although theiryjator designed to replicate catastrophic disasters in urban set-
popularity has funded enough research and mass production #gs [20]. This simulator is intended to be sufficiently realistic
reduce the initial cost of pUrChase or ConStrUCtion, they are St”és to eventua”y allow for Swapping in real-time sensory data
relatively expensive in terms of researcher or technician timgrom disaster situations, in order to allow disaster relief to mon-
for programming, maintenance, and experimental proceduregor and coordinate both human and robotic rescue efforts.
This has not prevented some researchers from conducting rig- The second platform is also independently motivated to pro-
orous experimental work on robot platforms [see e.g. 10, 25]vide the full complexity of the real world. This is the com-
However, the difficulty of such procedures adds urgency to th?nercial arena of virtual reality (VR), which provides a sim-

question of the validity of experiments in simulation. ulated environment with very practical and demanding con-
This difficulty has been reduced somewhat by the adveniraints which cannot easily be overlooked. Users of virtual
of smaller, more robust, and cheaper mass-produced robot plaisality bring expectations from ordinary life to the system, and
forms. However, these platforms still fall prey to a second probzpy agent in the system is harshly criticized when it fails to
lem: mobile robots do not necessarily address the criticismgro\,ide adequately realistic behavior. Ftsson [30] demon-
leveled above against simulations better than simulations dayrates that users evaluate a humanoid avatar with which they
There are two reasons for this: the need for simplicity and religye held a conversation as much more intelligent if it provides
ability in robots, and the growing sophistication of simulations.pack-channel feedback, such as eyebrow flashes and hand ges-
The constraints of finance, technological expertise and retures, than when it simply generates and interprets language.
searchers’ time combine to make it extremely unlikely that aSimilarly Sengers [27] reviews evidence that users cannot be-
robot will operate either with perception anything near as richcome engaged by VR creatures operating with overly reactive
as that of a real animal, nor with actuation having anythingarchitectures, because the agents do not spend sufficient time
like the flexibility or precision of even the simplest animals. telegraphing their intentions or deliberations. Such constraints
Meanwhile, the problem of designing simulations with predic-have often been overlooked in robotics.
tive value for robot performance has been recognized and ad- | contrast, robots which must be supported in a single lab

dressed as a research issue [e.g. 18]. All major research robg, |imited technical resources are likely to deal with far sim-
manufacturers now distribute simulators with their hardware. 'rbler tasks. Robots may face far fewer conflicting goals, lower
the case of Khepera, the robot most used by researchers runnigighe.related conflicts or expectations, and even fewer options
experiments requiring large numbers of trials, the pressure tgy actuation. Although robots still tend to have more natural
provide an acceptable simulator seems to have not only resultgfhrceptual problems than simulated or VR agents, even these

in an improved simulator, but also a simplified robot, thus mak-ye now increasingly being addressed with reliable but unnatu-
ing results on the two platforms nearly identical. Clearly thisyg| sensors such as laser range finders.

similarity of results either validates the use of the Khepera sim-

ulator, or invalidates the use of the robot. 4.3 Roles for Robots and Simulations
When a simulator is produced independent of any particular

theory of Al as a general test platform, it defeats much of therobots are still a highly desirable research platform. They pro-
objection raised in chargésandC above, that a simulator is bi-  vide complete systems, requiring the integration of many forms
ased towards a particular problem, or providing a particular sef intelligence. Many of the problems they need to solve are
of results. In fact, complair€ is particularly invalid as areason closely related to animal’s problems, such as perception and
to prefer robotics. Experimental results provided on simulationsavigation. In virtual reality, perfect perception is normally
can be replicated precisely in other laboratories. Consequentlgrovided, but motion often has added complication over that
they are generallynore easilytested and confirmed than those in the real world. Depending on the quality of the individual
collected on robots. To the extent that a simulation is created foyirtual reality platform, an agent may have to deliberately not
and possibly by a community — as a single effort resulting in aass through other objects or to intentionally behave as if it were
platform for unlimited numbers of experiments by laboratoriesaffected by gravity or air resistance. Even in the constantly im-
world-wide, that simulation also has some hope of overcomingyroving RoboCup soccer simulator, there are outstanding diffi-
argumens. culties in simulating important parts of the game, such as the

This gross increase in the complexity of simulations has pargoalkeeper’s ability to kick over opposing team members (cur-
ticularly true of two platforms. First, the simulator developed rently compensated for by allowing the keeper to “warp” to any
for the simulation league in the RoboCup soccer competitiorpoint in the goal box instantaneously when already holding the
has proven enormously successful. Although competition alsball.)



Robots being embodied in the real world are still probablyalgorithms (e.g. setting weight decay parameters, choosing k in
the best way to enforce certain forms of honesty on a researchdnearest-neighbor rules) are not lost.
A mistake cannot be recovered from if it damages the robot, an We propose a complex agent comparison server or web site,
action once executed cannot be revoked. Though this is aldo be at least partially modeled on DELVE. This site should al-
true of some simulations [e.g. 31], particularly in the case oflow for the rating of both agent approaches and comparison en-
younger students, these constraints are better brought home wimonments, thus encouraging and facilitating research in both
a robot, as it becomes more apparent why one can't ‘cheatfields. It could also be annotated for educational purposes, in-
Finally, building intelligent robots is a valid end in itself. Com- dicating challenges and environments well suited to school, un-
mercial intelligent robots are beginning to prove very useful indergraduate, and graduate course projects. Such a site might
care-taking and entertainment, and may soon prove useful in aprovide multiple indices, such as:
eas such as construction and agriculture. In the meantime robots ) ] ] )
are highly useful in the laboratory for stirring interest and en- ® Environments, ranked by number and/or diversity of partic-
thusiasm in students, the press and funding agencies. However, 'Pants.

given the arguments above, we conclude that the use of roboty agent architectures (e.g. Soar, Behavior-Based Al). This

as experimental platforms is neither necessary nor sufficientin - g1,5u1d also allow for the petition for new categories.
providing evidence about complex agent intelligence. Robots,

like simulations, must be used in combination with rigorous ex- ® Contestants and/or contesting labs or research groups . This
perimental technique, and even so can only provide evidence, allows researchers interested in a particular approach to see
not conclusive proof, of agent hypotheses. any related work. Ranked by the number and/or diversity of

In summary, neither robots nor simulation can provide a ~ €nvironments.
single, .ultimate research platform. But then, neit.her can any  are are some examples of already existent platforms which
other single research platform or strategy [15]. While not deny- ight be included on th .

) > . : . L ght be included on the server:

ing that intelligence is often highly situated and spemallzedm

[14, 17], to make a general claim about agent methodology re-e RoboCup [21, 19].

quires a wide diversity of tasks. Preference in platforms should

be given to those on which multiple competing hypotheses can®

be tested and evaluated, whether by qualitative judgments such

as the preference of a large number of users, or by discrete quan-

tifiable goals to be met, such as a genetic fithess function, or the

score of a soccer game. e Tile World and Truck World, designed as complex planning
domains. [15]

Khepera robot competitions. Both of these two suggestions
provide simulations as well as organized robotic competi-
tions. They test learning and perception as well as planning
or action selection.

. rdinating H hesis Testin
>. Coordinating Hypothesis Testing e Tyrrell's Simulated Environment [31] designed to test

Whether there can be general solutions to problems of intel- ~action-selection and goal management.
ligence is an empirical matter that has already been tested in,
some domains. For neural networks and other machine learn-
ing methods, the UCI Machine Learning Repository holds a e An analog Turing Test, using magnitude estimation to com-
large collection of benchmark learning tasks. Besting these pare dialog systems.

benchmarks is not a necessary requirement for the publication

. ; In addition, there are at least two software environments de-
of a new algorithm, but showing a respectable performance on. o . X
signed specifically to allow testing and comparison of a number

them improves the reception of new contributions. Essentially; ° . . : e
NN . ~of different architectures, though they contain no specific exper-
benchmarks are one indication for both researchers and review- L :
; o . imental situations as currently developed. These environments
ers of when an innovation is likely to be of interest.

. i are Cogent [12] and the Siagent Toolkit [28].
Further, Neal and colleagues at the University of Toronto

have constructed DELVE [24], a unified software frameworkg  conclusion

for benchmarking machine learning methods. DELVE contains

a large number of benchmark data sets, details of various md@o summarize, we believe that as agents approach the goal of
chine learning techniques, currently mostly neural networks antleing psychologically realistic and relevant, their evaluation
Gaussian Processes, and statistical summaries of their perfarill require the techniques that have been developed in the psy-
mance on each task. One of the most important requirements @hological sciences. This evaluation is critical in providing a
that each method is described in enough detail that it could bgradient as we search for the right sorts of techniques to build
implemented by another researcher and would obtain a similasomplex agents. The techniques of hypothesis testing have been
performance on the tasks. This ensures that the mundane lnaffined to describe truly complex agents. However, these are
essential decisions that are an essential part of many learnirsgientific techniques, not proofs. They do not give us certain

Chess.



answers, only more information. We believe many of the crit{12] R. Cooper, P. Yule, J. Fox, and D. Sutton. COGENT: An
icisms of benchmark testing made in the past failed to prop-
erly acknowledge this feature of experimentation. We should

trust increased probability, rather than proof-theoretic guaran-
tees. The more people perform tests across competing hypothe-
ses, the more likely we will be to achieve our research goals,
whether they are engineering complex, social agents, or under-
standing the nature of intelligence.
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